University of East Anglia School of Information Systems

Using Magnetic Positional Sensors to
Assist in the Recognition of
Human Gestures from Visual Imagery

Roger Rowland — 9964924

July 2001






Table of Contents

CHAPTER 1 INTRODUCTION

1.1 INTRODUCTION ...ccoiiiiiiiiiiiieeeeeeeeeee e
Lo L1 OVOIVICW ..o
1.1.2  Structure Of this dOCUTENL...........c...ccveeeieiiieeiiie ettt ettt
1.2 MACHINE BASED GESTURE RECOGNITION .......cccouuumuiiieieieiieiiineeeeeeeeeeenannnnns
L.2.]  INEFOAUCITON. ...l
1.2.2 Problems and challenges .................ccccccoeiviimiiiiiiieiiieiieeee et
1.3 AIMS AND OBJECTIVES .....otttttuiiieeeeeiettieieeeeeee ettt e s e e e e e eeaaaaeeeeeeeesaaannnnaas
L.3.1 PFOJECT QIMN ..ottt ettt e et
1.3.2 ODJECHIVES ...ttt e

CHAPTER 2 GESTURE RECOGNITION

2.1  BACKGROUND ....cutiiiiiiiiiieeeiteesiteesitee ettt e eiteesteeesnteeesnaeeesiseesnaseesnsneesaneeesanes
2,11 INIPOAUCEION. ...t
2.1.2  GeStUTE TEPTESCRIALION. .......cc.eeeeeeeiie et eeieeeite e ete et taeetaeestaeetaeetaeebaeeseeeneeas
2.1.3  FeQture @XtrACHION. ............cc.c..vueeeeeeeeeee ettt
2.1.4  Data COIECHION............c.....ccceeeeeeeeeeeeeeeeee e
201,85 RECOZMITION ...ttt ettt ettt ettt et
2.2 STATISTICAL MODELS FOR GESTURE RECOGNITION......cccuteeririearirieniieenneeennnes
2.2 1 INIPOAUCEION. ...
2.2.2  The point distribution model................ccocccoevviiiiiiiniieiiieeie e
2.2.3  Non-linear point distribution models ....................ccocoomviiiiiiiiiiniiiiiiie i
2.2.4  The hidden Markov model.........................ccccoooeeiiiiiiiieeeie e
2.2.5 Recovering 3D pose from @ 2D VIEW.............cccccueviaiimiiiiieiieseee e

CHAPTER 3 METHODS

3.1 OVERVIEW ..ottt ettt ettt ettt et ettt st ettt e sbe e st
3 L] IAIFOAUCTION. ..ottt taeennee s
3. 1.2 DAEA CAPTUTC.......cc.eeeeeeeeee ettt e et e st eeenseesnbaeensee s
3.1.3  StatiStiCAl MOAEIS...............ooceeiiiiieiiiceee e
3.2 DEVELOPING A NEW DATA GLOVE....cc.ctiitiinitiniieniieeieenieenieenieesreenieesireennee e
3.2.1 Magnetic positional iMAZING SYSIEM............ccueeeeeeieeeeerieieieeeieiesiieeteesieesreessaeesee s
3.2.2  Building a model of the hand ..................cccoovueeeiiiiiiieiiiiiieeie e
3.2.3  Capturing 2D and 3D dAta.................ccocceeiiieeiiiiiieeie et
3.3 MODELLING HAND SHAPE ......etiiiitiiiieeniiteeniiee ettt ettt eieee st e e e
3.3.1 Hybrid point distribution models ....................cccocceiviiiiaiiiiniiiiieieiieeee e
3.3.2  Building hybrid PDM S ..........cc.ccooouiiiiiiiiiiieiieeeeee e
3.4 EXPLORING HIDDEN MARKOV MODELS.....cc.certtemiiirreeniienreenieenreenseesieeenneennne
340 IRIPOAUCEION. ...t
3.4.2  HMM Workbench AppliCALION...............c.cccoeviiiiiiiiiiieei et

CHAPTER 4 CURRENT STATUS

4.1  DATA GLOVE HARDWARE ......uttiiiiiiaiiieeiteeeiteesieeesiteesieteeniseesnireesnsneesneeesnnes
A 1.1 LIMEEAEIONS. ...t
4.1.2  Planned iMPFOVEMENLS .............ccueeeueeiiieeieeeieeettesteesitee st e sttt e stsaessbeessseestseassseensseens
4.2 STATISTICAL MODELLING ...cccuttteeeriiieeeesiiteeeeenirreeessnseeesssssneessssseeessssseeesnnns
42,1 LIMEEAEIONS. ...
4.2.2  PlAnned iMPFOVEMENLS .............ccueeeueeiiieeieeeiteeitesteesitee st e sttt e sibeessbeesibeensseassaeenaseens
G N1 0.1 N 2 S SPRURTPSPN
4.3.1  Progress VS. ODJECHIVES ..........c.c.cccouueiieeiiee ettt

CHAPTER 5 REFERENCES







List of tables

Table 3-1 — ActiveX Hand execution threads...........
Table 3-2 — 3D Data Capture File Format.................
Table 3-3 — Combined 2D/3D Data Capture Format






List of figures

Figure 3-1 - Prototype data gloVe........c.ooviiieiiieeiieceeeeeeee e 38
Figure 3-2 — Data glove Sensor [ayOut .........ccccvieeiiieeiiiecieeciie et 39
Figure 3-3 — ActiveX Hand control in use by MATLAB......ccccoviiiiniiniiciieeee, 42
Figure 3-4 — Hand imaging application...........c.ceccveeviieriieiiienie e 43
Figure 3-5 — 3D Data Capture SChematicC...........ccccuveeiiieeiiieniie e 48
Figure 3-6 — 3D Data Capture ReVIEW.........cccviieiiiieiiiecieeeiie e 50
Figure 3-7 — “Synchronised” 3D and 2D Data Capture...........cccceeeeveruenveneenveneenne. 51
Figure 3-8 — 2D/3D Capture REVIEW .......cccuiiiiiiiiiiieniieeiieeee et 54
Figure 3-9 — Selecting Training Data for the PDM..........ccccoooiiiiiiiiiiiiiieceeeeee 56
Figure 3-10 — Building the PDM........ccoooiiiiiiiiieeeeceece et 58
Figure 3-11 — Producing a 2D COntOUT..........ccceeeiireeiiieeiieeeiieeeieeesveeeseree e e s 60
Figure 3-12 — Training Data Projected from Shape Space..........ccoceverienvininnenennne. 62
Figure 3-13 — Generating Shapes from a PDM..........cccccoooiiniiiiiiniiiiieieceeie e 63
Figure 3-14 — HMM Workbench application.............ccceeeeuiieriiieeniiieeniie e 65
Figure 3-15 — Applying HMM algorithms...........cccoeeoiiiiiiiniiieieceeee e 67






Abstract

Attempting to recognise and interpret human gestures using machine vision poses a
number of difficult problems. There are many areas in which substantial progress is
needed before the full benefits of computer-based gesture recognition could be
realised in real world applications. These range from the need for some degree of
language processing to the more practical limitations imposed by the level of ability

of computer hardware.

When attempting to interpret human motion using a single-camera view, it is helpful
to be able to estimate the pose of the subject in three dimensions. When dealing with
the detailed movements necessary for a gesture recognition or sign-language
application, it is necessary to closely examine the shape and orientation of the hand.
The significant potential for (self) occlusion in such images makes this a particularly

difficult problem.

For this research, we are employing a novel magnetic positioning system which
allows the capture of accurate 3D positional information from sensors small enough to
be placed at various sites on the hand. By capturing and analysing this positional data
together with images from a single video camera, we are attempting to develop a
viable method for reconstructing the shape of the hand using the video data alone. If
successful, we hope that this will provide us with a way to disambiguate particularly

hard-to-decipher gestures.
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1.1

Chapter 1 Introduction

Introduction

1.1.1 Overview

In recent years, technological advances in hardware design and construction have
provided a significant increase in the availability of computing power at a greatly
reduced cost. One effect of this has been a proliferation of research in the area of

computer vision.

Lately, there has been an increasing interest in the automated recognition and
tracking of human motion. Potential applications include; motion capture - to
assist computer-generated animation for the film industry or to analyse sporting
performance, automated surveillance - for security purposes or behavioural
analysis, and a number of subjects broadly covered by the term gesture
recognition. The latter includes such areas as Human-Computer Interaction (HCI)

and the recognition and interpretation of sign language.

This document describes the application of a new 3D magnetic positioning system
- originally developed for producing three-dimensional images of medical
endoscopes — to attempt to address some of the problems affecting research into

machine based gesture recognition.
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1.1.2  Structure of this document

The remainder of this chapter gives a brief introduction to machine based gesture
recognition and highlights some of the problems involved. At the end of this

chapter, the aims and objectives of the project are stated.

Chapter 2 presents a review of existing research into gesture recognition and
introduces some techniques which are of particular relevance to this work. These
include the point distribution model (PDM) and the hidden Markov model

(HMM).

Chapter 3 describes the methods used to conduct this research so far. These
include the development of a new data glove using magnetic positional sensors
and the implementation of software for building point distribution models and

hidden Markov models.

Chapter 4 describes the current status of this project in terms of the results

obtained so far, the problems encountered, and the proposed next steps for

continuing the research.
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1.2

Machine based gesture recognition

1.2.1 Introduction

Recognising human gestures is a complicated task which involves inter-
disciplinary aspects such as motion modelling, motion analysis, pattern

recognition, artificial intelligence, and even psycho-linguistic studies.

A large part of the existing research [38] into machine based gesture recognition
has involved various combinations of two techniques; the analysis of video
images using one or more cameras, and/or some form of instrumentation of the
subject using, for example, data gloves or colour coding. In addition, the analysis
may be focused on purely static poses of the subject or may also involve a
dynamic element by considering temporal changes. Both static and dynamic
analyses typically entail the application of statistical models, for example active

shape models [8], point distribution models [5], and hidden Markov models [37].

1.2.2  Problems and challenges

Collecting suitable data for gesture recognition is not trivial — when analysing
video images, the subject has first to be located in each image frame and possibly
segmented from the background before any motion tracking or analysis of shape

or pose can be attempted.

Many of the 2D image processing techniques required are widely used in

computer vision applications [30] and are not in themselves a major problem. It

has also been shown that it is possible to automatically track a moving object in

13



real time using a video camera by employing a contour tracking technique which

gives good performance even in the presence of background clutter [15].

However, to produce a system which can recognise a wide range of human
gestures, it is also necessary to be able to discover and interpret the motion and
pose of the subject in three dimensions. When considering the human hand as
playing an instrumental part in the execution of a gesture, then shape and
orientation are as important as movement — for some gestures perhaps even more
so. In such a highly articulated structure as a hand, this is a particularly difficult

problem for a vision based system due to the high likelihood of occlusion.

1.3 Aims and objectives

1.3.1 Project aim

The aim of this project is to develop a technique whereby as much information as
possible about the shape and orientation of the human hand in three dimensions
may be derived from a single video camera view. This information will then be

used in an attempt to disambiguate some particularly hard-to-decipher gestures.

1.3.2  Objectives

The detailed objectives of this project are as follows:

e To review existing research into machine based gesture
recognition and to describe some of the specific Chapters 1, 2
techniques which are of interest to this project.

e To develop the hardware and software necessary for Chapter 3
creating a data glove using magnetic positional sensors.

14



To design and develop software to allow the capture of
2D and/or 3D data from the new data glove.

To design and develop software to produce point
distribution models using data captured by the glove and
to explore the properties of these models.

To design and develop software for implementing hidden
Markov models and to use this to model the dynamics of
captured gestures.

To re-assess the aims and objectives of this project in the
light of results found so far and to propose alternative
paths for progressing the research to some conclusion.

15

Chapter 3

Chapter 4
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Chapter 2 Gesture recognition

2.1 Background

2.1.1 Introduction

The functions required for machine based gesture recognition could be broadly

grouped into four areas:

e (esture representation — what constitutes a gesture?

e Feature extraction — what features are important for recognising a
particular type of gesture?

e Data collection — how can information about these required features be
reliably and efficiently collected?

e Recognition — how the data collected is used to ‘understand’ gestures.

2.1.2  Gesture representation

Gesture representation involves some description - possibly linguistic - of what
constitutes a gesture in a given context. This can vary widely depending on the

intended application.

In sign language for instance, signs may be classified by hand shape, hand
orientation, position (usually with respect to the body), and movement [6]. In
some HCI applications, hand shape and orientation may not be as relevant where
gestures are intended more to control or manipulate real or virtual objects and less

as a means of communication.
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Generally, gestures requiring a more complex representation will be more difficult
to recognise. Vogler and Metaxas [36] have demonstrated that three dimensional
features are superior to two dimensional ones when attempting to recognise sign
language, while Min et al [7] show that two dimensional images are sufficient for

a gesture-driven editing system.

In a more general survey, Gavrila [11] supports this idea and classifies the

techniques used in previous work into three (sometimes overlapping) areas:

e 2D approaches without explicit shape models,
e 2D approaches with explicit shape models, and

e 3D approaches

These are discussed in some detail in [11] and Gavrila concludes that the most
suitable approach to pursue depends primarily on the intended application. A 2D
approach is effective for applications where precise pose recovery is not required
and represents the easiest solution for applications involving a single subject with
constrained movement and a fixed viewpoint. 3D approaches are more effective

where there are multiple subjects, cluttered backgrounds or occluded features.

2.1.3 Feature extraction

As noted above, the intended application largely defines the features of interest. In
a system where purely ‘gross’ movements of the hand-arm system are of interest
[7], employing some form of segmentation of a 2D image — for example
background subtraction or colour segmentation — reveals those features of interest,

in this case, motion trajectories.
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For static hand posture recognition, although some geometric features may be
discernible (e.g. fingertips, contours), these are not always reliable due to self-

occlusion and possibly difficult lighting conditions.

In such cases, where there is no instrumentation of the subject, the whole image
may be taken as the input to a recogniser where features are selected implicitly or
automatically. This is where some form of pattern matching may be used and
often involves the use of some sort of shape model, thereby introducing some
degree of foreknowledge about the application area. Kakadiaris and Metaxas [16]
have recently shown how a model-based approach may be used to track upper-
body extremities in three dimensions based on a spatio-temporal analysis of the

subject’s silhouette.

2.1.4 Data collection

As the intended application defines the features of interest, so these features
influence the methods of data collection. The use of video cameras is almost
universal and some researchers use two or more cameras to circumvent problems
with occlusion and cluttered backgrounds [26, 27, 28]. In many cases when
dealing with the analysis of human movement, colour is an important aspect as the
hues generated by skin tones fall in a quite well-defined range and ease the

segmentation of the subject from the background.

2.1.5 Recognition

Analysing the sometimes vast amounts of data collected by video cameras and/or

data gloves can be a daunting task and consume inordinate amounts of computing
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2.2

power. This is especially true where a three dimensional approach has been taken

and as Gavrila [11] notes,

“It is fair to say that the results of vision-based 3D tracking are still limited at this
point. Few examples of 3D pose recovery on real data exist in the literature and
most of these introduce simplifications (e.g. constrained movement, segmentation)
or limitations (e.g. processing speed) that still require improvement with respect
to robustness. Robust 3D tracking results have been particularly scarce for

’

approaches using only one camera.’

It is clear that the ability to recover 3D pose from a single camera view would be
very desirable in the search for a more robust gesture recognition system but that

this will not be an easy problem to overcome.

Many existing researchers have employed some form of statistical model to assist

in the recognition of objects from video images. Some of these techniques are

described in detail in the next section.

Statistical models for gesture recognition

2.2.1 Introduction

This section describes some techniques which are of particular interest to this
research. Among these are the point distribution model (PDM) and the hidden

Markov model (HMM). The way in which these models are developed and used in
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this project is described in chapter 3. The remainder of this chapter describes the

underlying principles.

2.2.2  The point distribution model

Models are widely used in computer vision to classify, track or locate image
features using some prior knowledge of object shape. As many objects are non-
rigid, some sort of deformable model is often required in order to capture shape

variability.

The point distribution model (PDM) [8] is one such model. It employs techniques
based on linear statistics and so is particularly suited to modelling shape variation
where the inherent differences between similar shapes can be represented by a
linear function — for example, particular parts of the shape distort by moving only

along straight lines. A PDM is typically constructed as follows:

If a non-rigid object is defined in terms of landmark points positioned strategically
on various object features (and optionally at regular intervals in between) then, by
labelling these points on a set of training examples of the object, the following
approach may be used to discover the mean object shape and the major modes of

shape variation.

Taking an example of a shape represented by a 2D contour, the n landmark points
chosen form a list of n (x, ) co-ordinates defining each example. Each of these
examples, or poses, may instead be considered a vector composed of a

concatenation of these co-ordinates, e.g. (x;, y;, X2, ¥2, ... X», V») Which effectively
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defines a single point in a 2n-dimensional space (often referred to as shape space).
As these points in shape space are produced from similar training examples, they
will tend to form a cluster, which in the ideal case will be uniform and hyper-
elliptical in nature. Note that some pre-alignment of the training data (scaling,

rotation, translation) is required to ensure that the best model is produced.

Having assembled a training set £ of N example vectors, x; (i=1, ..., N), the mean
shape is calculated by finding the average vector. Principal component analysis
(PCA) [12] is then performed on the deviation of the example vectors from the

mean using eigenvector decomposition on the covariance matrix S of £ where,

S = %iﬁ:(xi —;Xxl. —;)T

However, where the dimensionality of the data is high — for example a contour of
300 (x, y) points giving a 600-dimensional training vector — then the calculation of
the eigenvectors and eigenvalues of the covariance matrix can be lengthy and the

physical memory used by the computer prohibitive.

To overcome this, Bowden [4] notes that it is not always necessary to solve a
matrix for all eigenvectors. If the number of training examples, N, is less than the
dimensionality, then the number of eigenvectors that can be extracted from the
covariance matrix cannot exceed the number of training examples (N-7). In such
cases, significant computational savings can be made by solving for a smaller

NxN matrix derived from the same data.
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As detailed in [4], if the covariance matrix, S, defined above is rewritten as

S:LDDT
N

where D is, in the above example, a 600 x N matrix with the training samples as

columns, then if a new matrix, 7, is a smaller N x N matrix

T=—D'D
N

and e; (i=1, .., N) are the unit, orthogonal eigenvectors of 7 with the

corresponding eigenvalues v;

Te; = ye; (i=1, ..., N)

then

premultiplying by D yields,
| "
—DD" De, =y, De,
N

and therefore S(De;) = y(De;)

So if e; is an eigenvector of 7, then De; is an eigenvector of S and has the same

eigenvalue. The N unit eigenvectors of S are then v; (i=1, ..., N) where

with corresponding eigenvalues A; = .
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In a compact model, it is usually found that a large percentage of the variability
can be captured by the first few modes of variation which, together with the mean
shape, gives a convenient way to describe any reasonable pose of the original

model.

As described above, the N unit eigenvectors of the covariance array S are v; (i=1,
..., N), so if we take the ¢ unit eigenvectors of S corresponding to the ¢ largest
eigenvalues, then it is possible to generate a deformed shape x by adding weighted

combinations of v; to the mean shape

where b; is the weighting for the i”" variation vector.

Cootes [8] expresses this in matrix form
x=x+Pb

where P = (v;, v, ..., v, i1s a matrix of the first ¢ eigenvectors and b = (b, by, ...,

b,)" is a vector of weights.

Generally accepted ranges for the weights are i3\//1_,» given that this is really
equivalent to 3 standard deviations (the square root of A; being the standard
deviation of the variance along v;) and so encompasses in excess of 99% of the

total deformation.
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So with a well-defined PDM, it is possible to explore almost the whole range of
deformation indicated by the original training set, producing viable shapes which
were not present in the training data. It is also possible to classify shapes using a
much smaller number of parameters than those used to define each training shape.

This is important when considering the recognition of previously-unseen shapes.

2.2.3  Non-linear point distribution models

As the ‘standard’ PDM described above is based purely on linear statistics then,
for any particular mode of variation, landmark points can move only along
straight lines. Non-linear movement is achieved by combining two or more

modes.

This situation is not ideal. Firstly because the most compact representation of
shape variability might not be achieved, and secondly because implausible shapes
can be generated due to the incorrect assumption that the variation modes are
independent. The effect is particularly bad when the object being modelled can

bend or pivot. Like the fingers of a hand, for example.

Also, when building a set of training data for a PDM, the accurate labelling of
landmark points is very important. The landmark points on each training example
should relate very closely to the same physical feature on the object as it is the
relative movement of these points that is significant. Inaccurate identification of
landmarks introduces additional non-linear behaviour into the model which again
results in the model exhibiting deformations not present in the original training

set.

25



However, when modelling an articulated shape like the hand, PDM’s can still be
useful. Sozou et al. [31] have proposed using polynomial regression to fit high-
order polynomials to the non-linear axis of the training set and later [32], the same
authors used a back-propagation neural network to perform non-linear PCA. Heap
and Hogg [13] suggest using a log polar mapping to remove non-linearity from
the training set before PCA followed by the reverse process afterwards. These
authors have shown that this may be very useful in applications where the non-

linearity is mainly due to pivotal motion.

All of the above attempt to overcome the problems caused by some non-uniform
distribution of training points in shape space which - in extreme cases - may form
into discrete ‘clumps’. In such cases, some form of clustering technique may be
used to analyse this distribution of training points. This allows the more simple
calculations involved in the linear PDM to be retained and offers significant
performance benefits over some of the alternative techniques, like polynomial

regression [31].

In a situation like that described above, the distribution of points in shape space
effectively form a number of smaller models, which may overlap to some greater
or lesser extent. As a gesture is made, it will perhaps fit into one of these models
more closely than the others and, as the gesture progresses, this model will
gradually become less reliable until it becomes necessary to switch to a more
suitable one. The problem then arises of deciding when best to switch between

these models and in what order.
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As there will inevitably be areas where this choice is ambiguous, some form of
probabilistic matching would be appropriate to model these dynamic changes
during the training process. One possible way of achieving this would be to use a

hidden Markov model.

2.2.4 The hidden Markov model

Hidden Markov models are a class of statistical models which attempt to
characterise the properties of the observable output from a real-world process.
This is particularly relevant where the observable output produced by the real-
world process is subject to noise or distortion. In recent years, HMM’s have been

successfully applied to speech recognition systems [41].

To understand exactly what an HMM is, it is first necessary to understand a little
about Markov chains, or first-order Markov models. The following description is
largely abstracted from [23] and [25] although a more comprehensive coverage is

given by [14].

Discrete Markov chains and HMM’s

Consider a system which may be described at some point in time as being in one

of a set of distinct states'.

Suppose there are N states such that the set of states S = {S;, Sa, ..., Sn}.

" In this context, we are initially concerned only with regularly spaced discrete times (hence ‘discrete’
as opposed to ‘continuous’) and a finite number of distinct states. This may need to be reviewed.

27



At each discrete point in time, the system undergoes a change of state according to
a set of probabilities associated with that state. Note that the change may possibly
be back to the same state. In a first-order Markov model, the ‘Markov assumption’
(or Markov property) is said to hold for a system where the probability of moving
from one state to another depends only on the current state, not on any part of the
previous history of states. Also, in this application, we are only concerned with

systems where the above probabilities do not vary over time (stationary models).

In these conditions, if the time instants associated with state changes are ¢t = /, 2,
..., and the actual state at time ¢ is ¢,, then there will be a set of state transition

probabilities a;; of the form

a; = P(qi=51q=5),  1sijsN

with the state transition coefficients, obeying standard stochastic constraints,

having the following properties
a; =0 and Zaﬁ =1

The above stochastic process could be called an ‘observable’ Markov model as the
output of the process is just the state at each instant in time, where each state

corresponds to an observable (physical) event.
In a hidden Markov model, the underlying states are not directly observable

(hence ‘hidden’) but are observed through another set of stochastic processes

associated with each state.
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Suppose the system produces a number, M, of distinct observable ‘symbols’. Let
this set of symbols be denoted by V' = {v,, v,, ..., vis}. Then for each state, j, there

will be an observation-symbol probability distribution B = {b;(k)}, where

bik) = P(vyatt|q,=S), 1<j<N 1 <k<M

This gives the probability that symbol v; will be observed given that the system is

in state S; at time .

One more probability distribution completes the elements characterising an HMM.

This is the initial state distribution 7 = {7;} where

w=P(q; =Sy, 1 <i<N

This gives the probability that the system begins in a particular state.

To summarise, the probability measures characterising an HMM are as follows

A = {ay/ - the state transition probability distribution
B ={bi(k)} - the observation symbol probability distribution, and
= {m} - the initial state distribution

While a complete specification of an HMM requires the specification of two
model parameters (N and M), specification of observation symbols, V, and the
specification of the above three probability measures, for convenience the
following compact notation is used to indicate the complete parameter set of the
model

A=(4, B, 7)
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Three problems

For a HMM to be useful in modelling a real-world process, there are three basic

problems which need to be solved. These are :

1. Given the observation sequence O = O, O,, ..., Or, and a model 4 = (4, B, ),
how do we efficiently compute P(O | A), the probability of the observation

sequence given the model?

2. Given the observation sequence O = O, O,, ..., Or, and a model 4, how do we
choose a corresponding state sequence Q = ¢q;, ¢», ..., gr which best explains

the observations?

3. How do we adjust the model parameters A = (4, B, n) to maximise P(O | 1) ?

Problem 1, the ‘evaluation problem’, effectively asks for a method of scoring
how well a particular model matches a given observation sequence. In a limited
vocabulary speech (or gesture) recognition system, it could be that a different

HMM would be created to ‘recognise’ each possible ‘word’ in the vocabulary.

The solution to this problem would provide a method of identifying which model

best fits an unfamiliar word and so give an indication of what that word might be.

Problem 2 attempts to uncover the ‘hidden’ part of the model. This is not easy to
accomplish given that there may be a number of plausible underlying states
explaining an observation sequence, when using different criteria for judging

plausibility.
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The solution to this problem may be useful in gaining insights about the structure
of the model. Such insights might provoke changes in the number of states, for

example, to optimise the suitability of a model for a particular purpose.

Problem 3 addresses training. Given that we have an observation sequence (or a
number of such sequences), how do we adjust the model to maximise the

likelihood that it would produce this (these) sequence(s)?

The solution to this problem would allow a ‘training’ function to be built into a
speech (or gesture) recognition system where, during training, the same word or
phrase is delivered by different speakers and the output used to adjust the model to
maximise the chance of it correctly identifying the same word or phrase when

spoken by an unfamiliar voice.

Three solutions

The solutions to all three problems are well documented [25]. The solution to
problem 1 is provided by the ‘Forward’ part of the ‘Forward-Backward
Procedure’. This is an elegant and efficient algorithm which uses induction to
avoid the brute force approach involving the enumeration of every possible state

sequence of the same length as the observation. The Forward algorithm defines

the ‘forward variable’ o(i) as

a(i) =P(O;0;.. 0, q:=8i | A
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that is, the probability of the partial observation sequence O;, O, ..., O; (until time

t) and state S; at time ¢, given the model A. The algorithm is implemented as

follows -

Initialisation: (i) = mbi(0)), 1 <i<N
N

Induction: a;+;(j) = {Z «, (Z)a;’j }bj 0, 1 <t <T-1I, 1 <j<N
i=1

N
Termination: PO| )= lear (@)

The solution to problem 2 is given by the Viterbi Algorithm. This algorithm is
based on dynamic programming methods and is in many respects similar to the
implementation of the Forward algorithm described above. A discussion of this
algorithm along with a complete implementation is given in [23]. The main
difference is that the summation performed in the induction step is replaced by a

maximisation procedure.

Problem 3 is by far the most difficult to solve. There are a variety of optimisation
methods in existence [23, 24], one popular technique being the Baum-Welch
algorithm [25]. This algorithm utilises the ‘forward variable’ produced by the
solution to problem 1 along with the ‘backward variable’ which is produced by
the second part of the Forward-Backward procedure. The backward variable f(i)

1s defined as

,Bt(l) =P(0;+1 Ot+2 OT‘ q: = Sl', /1)
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that is, the probability of the partial observation sequence from ¢ + / to the end,
given state S; at time ¢ and the model A. As with the calculation of the forward

variable, induction is used to good effect -

Initialisation: Pr(i) =1, 1 <i<N
N

Induction: (i) = 245,01 B () (=T-1,T2,..,1 1<i<N
j=1

The forward and backward variables together may be used to compute the
probability that the system was in state S; at time ¢ and state S; at time #+/ during

the given observation sequence.

From this point, by summing over the time index, it is possible to arrive at a way
of counting the number of times the system leaves a particular state, and the

number of times the system transitions from state S; to state S;.

The full implementation is described in [25], but it can be seen that the above

information may be used to re-estimate the model parameters A as follows

m; = expected number of times in state S; at time ¢ = /

expected number of transitions from state S, to state S,

aij_

expected number of transitions from state S,

expected number of times in state j and observing symbol v,

b, (k)= —
expected number of times in state j
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Summary

Hidden Markov models have been used extensively for speech recognition
systems [41] and also by a number of researchers investigating gesture
recognition, for example [33, 19, 37]. They will almost certainly form part of this
project although at the time of writing, the exact details of their application have

not been decided. This is discussed further in Chapter 4.

2.2.5 Recovering 3D pose from a 2D view

As stated earlier, the ability to recover information about the pose of the hand in
three dimensions using a 2D camera view is the main focus of this project. Other
researchers have employed a number of techniques to achieve this aim (often with
objects other than just the hand) with varying degrees of success. The methods

used include the following.

Bowden et al. [5] have used a non-linear PDM to recover the 3D pose of a human
torso (head, arms, body) based on a 2D view from a single camera. The method
they used was to incorporate both 2D and 3D data into the vector defining the
pose of each training example. This hybrid data was then used to produce a linear

PDM using the method described in section 2.2.2.

The non-uniform distribution of training points in shape space was then analysed

by a k-means clustering algorithm and the clusters identified were individually

subjected to PCA. The results of this process were used to constrain the model.
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After building a model using this technique with the hybrid 2D/3D data, the model
was presented with an unfamiliar 2D object and allowed to deform” within the
above constraints to fit the 2D elements of the model to this shape. As the 2D
elements of the model deformed, so the 3D elements also deformed and — the

authors suggest - produced the likely pose of the object in three dimensions.

This technique claims some success although the 3D data used to build the PDM
was generated manually by estimating the z co-ordinates from a visual
examination of each image frame. As the authors have noted, this lack of ground

truth makes it difficult to make an objective evaluation of performance.

Di Bernado et al. [9] have taken a different approach to tracking a human arm
(shoulder, forearm, hand position) in 3D using a single camera. They have
developed software to model an arm in 3D and use an initial estimate of arm
position to predict the arm projection in the image. The actual image from a single
video camera is analysed to segment the arm from the background and the
difference between the predicted arm image and the actual arm image is used as
an error measurement to update the estimated arm position using a recursive
estimator. This technique works well for a human arm where the area of interest is

relatively easy to identify and there are no significant problems with occlusion.

Shimada and Shirai [29] and Ouhaddi and Horain [20] have attempted to apply

modified versions of the above technique to the human hand. Both of these have

* As an active shape model (ASM) — see [8]
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been hampered by the effects of occlusion in the image sequences resulting in

inaccurate or ambiguous results in many cases.

Rehg and Kanade [26, 27, 28] use multiple cameras to provide three dimensional
real time tracking of a hand model although this also suffers from problems
caused by occlusion and cluttered backgrounds (remember, the intention for this

project is to use a single video camera).

The proposed method for approaching this project is initially to use synchronised
2D images (from a single video camera) and 3D data (from magnetic positional
sensors) of various single-hand gestures, to produce a hybrid PDM in a similar

manner to [5]. This is described in more detail in the following chapter.
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Chapter 3 Methods

Overview

3.1.1 Introduction

This chapter describes the methods used and software developed to capture and
analyse the information we believe is required to further the aim of this project.
These developments fall broadly into two areas; raw data capture and statistical

modelling.

3.1.2 Data capture

Section 3.2 describes the development of a new data glove using magnetic
positional sensors. This covers the design of the glove and the software developed
to capture data both from the glove itself and from a ‘synchronised’ video camera.

This data forms the raw input to the modelling phase.

3.1.3  Statistical models

Section 3.3 describes the software developed to allow the production of hybrid
2D/3D PDM’s using the captured data. The techniques used follow those outlined

in section 2.2.5.

Section 3.4 describes the development of software for building, training and
evaluating hidden Markov models. As discussed in the previous chapter, HMM’s
will probably play some part in this project and this development results from that

assumption.
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3.2

Developing a new data glove

3.2.1 Magnetic positional imaging system

The system used for obtaining 3D point data from the new data-glove was
originally developed by Dr. John Bladen and colleagues for producing images of
medical endoscopes [2, 3]. The system consists of a number of passive single-coil
sensors placed in a generated
magnetic field. As the
characteristics of the generated
field are altered by the positioning
system, the responses of each of
the sensor coils are analysed to

derive the position and orientation

Figure 3-1 - Prototype data glove of those sensors (x, y, z, 6. @).

In the data-glove application (Figure 3-1), a cotton glove is fitted with a number
of sensors connected to the Bladen positioning system. The positioning system
powers three magnetic field generator assemblies, each consisting of three
orthogonally wound coils. These generators are fixed in a triangular configuration
on a wooden board, over which the action must take place. Whilst this is
physically a more restrictive environment than that possible when using a
conventional data-glove, the system has been shown to have a high degree of
accuracy [3, ch8] and, once set up, suffers no need for repeated re-calibration

whilst in use.
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The first prototype data-glove system using the Bladen positioning system is
described in [10]. Some later developments, including an alternative medical

application are described in [1] and [34].

The current data-glove uses eight sensors. Three of these are used to define the

plane of the palm and the remaining five are placed one on the tip of each digit.

The use of just eight sensors per hand was envisaged as an ideal minimum,
although certain assumptions are necessary about the way the hand moves if a

realistic image of a hand is subsequently to be rendered by a computer.

Figure 3-2 shows the approximate
positions and sizes of the sensor coils
used in the current version of the data
glove. All of the sensors are placed

on the dorsal (back) surface of the

hand.

Figure 3-2 — Data glove sensor layout

3.2.2  Building a model of the hand

Motivation

The need for a computer application to produce a 3D image of a hand is two-fold.
Firstly, there is the need to validate the performance of the Bladen positioning
system and data-glove. This is more easily performed at a subjective level if a

visual image of a hand can be displayed in real time as the data-glove is used.
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Secondly, such an application may be used to produce hand-shapes from data
generated by a statistical model, for example a point distribution model. This
would similarly assist the validation of any such PDM, which may potentially be
useful both in gesture recognition and in ‘driving’ an avatar from an alternative

source of data (e.g. text, speech).

Perceptual Control Theory

With the current version of the data glove, only the palm and fingertip positions
are directly measured by sensors. The positions of individual articulated joints
within each finger are not known. This does not give sufficient information to
allow a 3D model of the hand to be rendered as a realistic image without

additional processing.

In an attempt to simplify the calculation of joint angles from just the finger-tip
positions, a number of ideas derived from Perceptual Control Theory (PCT) have
been applied. This theory has its roots in the area of biological behaviour [21]
although little published work for this type of simulation is available. Dr. Richard
Kennaway at UEA has developed a simulation of six-legged insect using PCT and
Java which performs remarkably well without the need for inverse kinematic
calculations [18]. Dr. Kennaway’s development uses a hierarchy of PID
(proportional — integral — differential) controllers, where the higher levels send
their output to the next level down and only the bottom level controllers affect the

joint angles.
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In the hand model developed for this project, the PCT implementation consists of
a number of feedback controllers which incrementally adjust joint angles until the
desired position of each fingertip is achieved. Unlike Dr. Kennaway’s simulation,
there is currently no hierarchy of control and this is possibly a drawback. The

following sections describe this software in more detail.

3D Hand Software

In order to facilitate integration with other development platforms, the hand
imaging software has been implemented as an ActiveX control. This allows the
graphic display of a hand and manipulation of its size and shape from within other

Windows 9x/NT applications.

At present, the ActiveX version of the control has been tested using MS VC++,

MS Internet Explorer, MS Visual Basic, MS Visual J++ and MATLAB.

The ActiveX control is written in Microsoft Visual C++ using the Active

Template Library (ATL) and is accessed from other development environments as

a COM object (Component Object Model) using the /Unknown and/or IDispatch

interfaces.

Figure 3-3 overleaf shows the ActiveX control being used in a MATLAB session.
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Figure 3-3 — ActiveX Hand control in use by MATLAB

Software Design

The hand imaging software has been developed using an object-oriented design.
OpenGL is used for rendering the graphics. The application utilises three main

classes;

CHand Implements the complete hand model as a collection of vertices
compatible for use with OpenGL. Class members include a
collection of CFinger objects, each of which may be accessed
through methods exposed by CHand. The CHand class handles
generation of all surface normals and polygon definitions for the
complete model and is capable of drawing itself in an OpenGL

display list.

CFinger This class implements a single finger. A finger is able to calculate a
set of vertices describing its configuration based on its current size
and joint angles. These vertices are calculated relative to the
finger’s local origin and are made available to the owning CHand

object. The finger also implements methods used for automatically
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adjusting joint angles in order to place the fingertip at a given point
relative to the local origin. This is used for tracking a moving

sensor with the fingertip using techniques adapted from PCT.

CThumb A sub-class of CFinger, this class provides overridden methods for

vertex generation and joint movement specific to a thumb.

The application also requires a higher level class, containing a CHand object,
which implements the OpenGL interface and provides the means for the hand to
be ‘driven’ in some fashion. This class (ChandX) provides the COM interface
handling necessary for the application to operate as an ActiveX control. A test-
bench application has been developed which drives the ActiveX control via GUI
elements and/or from sensor data from a captured data-glove session. Figure 3-4

shows a screenshot from the completed hand imaging application.
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I Track sensor
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Left £ right [x]
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Figure 3-4 — Hand imaging application
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Fingertip sensor tracking

Each finger has three PID controllers (at present these are error-integrators). One
controls the finger extension by varying the top (distal) two joint angles, the
second controls the finger elevation by varying the bottom (proximal) joint angle

and the third controls the finger azimuth by varying the abduction angle.

These controllers operate together to bring the finger-tip to the position defined by
the relevant sensor. The range of allowable angles for the finger joints permit the
use of linear approximations for trigonometrical functions, which makes the

controller functions very small and fast.

The only assumption made in using this technique is that the two distal-most
joints of the finger tend to operate together when the finger bends in ‘normal’
usage. This assumption is based on observations of the movement of real fingers
as there is little theoretical evidence to support this as a general principle.
However, by adopting this assumption as a first model, these angles are equalised

and together control the finger extension.

When used to track actual sensor positions provided by the data glove, some
limitations have become apparent with this method of tracking. The model does
not accurately reflect the shape or dynamics of a real hand. In the model, fingers
bend in a plane normal to that of the palm and around axes parallel to the palm. In
a real hand, this is not the case [17]. It is likely that the axis of rotation of finger
joints changes slightly depending on the degree of inflexion. This and similar

mismatches between the model and the real world means that sensor movements
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are ‘seen’ which cannot be mirrored by the more constrained options provided by
the model. As a result, the PCT controllers often appear to ‘jump’ from one
configuration to another if the path of a fingertip sensor moves too far from that

permitted by the inbuilt constraints.

Multi-threading

The hand imaging control is multi-threaded. The main thread of execution (the
foreground thread) handles the interaction with the GUI and host application and
performs most of the OpenGL interaction. Each fingertip control function is
executed in a separate worker thread (background thread). These threads remain
suspended until fired by an event from the CFinger object. This occurs in
response to a PointAt message received by the owning CHand object. Once a

controller thread becomes active, it will broadly perform the following actions:

1. Calculate elevation (fgtElv) and azimuth (t1gtAzm) angles to the target point
using a linear approximation.

2. Calculate the distance (zg¢Ext) from finger base to the target point.

3. Calculate elevation (tipElv) and azimuth (¢tipAzm) angles to the finger tip using
a linear approximation.

4. Calculate the distance (tipExt) from finger base to the finger tip (i.e. the
extension).

5. Modify proximal joint angle based on elevation error (¢tgtElv — tipElv).

6. Modify two distal-most joint angles based on extension error (¢tgtExt — tipExt).

7. Modify abduction angle based on azimuth error (tgtAzm — tipAzm).
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8. If the fingertip has now moved by more than some threshold value, return to
step 3.

9. Otherwise, activate Hand rebuild thread and then re-enter suspended state.

These five controllers thus work in the background, attempting to adjust joint
angles in order to make the finger tips hit the target sensor positions as these are
supplied. The controller threads contain logic to enable their operation to be
interrupted (i.e. new target position received before current target reached) or

terminated (i.e. application closed).

The remaining background ‘worker’ thread (activated in step 9 above) causes the
whole hand to rebuild itself based on the new configuration of the finger(s). This
results in the re-creation of the OpenGL display list containing the vertex and
polygon data. Once this has been done, this thread fires a repaint in the main

foreground thread to display the result on screen using the OpenGL interface.

Table 3-1 summarises the responsibilities and interactions of all the application

threads.

Description Number of threads | Responsibilities

Foreground thread 1 User interface, application initialisation and
termination, screen painting, manage OpenGL
interface.

Hand rebuilder 1 Collect model vertices, calculate surface normals,
build OpenGL display list. Fire repaint in
foreground thread.

Fingertip tracking 5 Recalculate finger joint angles. Fire hand rebuild.

Table 3-1 — ActiveX Hand execution threads
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3.2.3 Capturing 2D and 3D data
Interface with the positioning system

The Bladen positioning system is supplied with a COM (Component Object
Model) interface which allows an application program to manipulate hardware

calibration data and to interrogate sensor positions and orientations.

Two systems have been developed for capturing data from the glove using this
interface. The first and simplest of these is designed to operate as quickly as
possible and save just the 3D sensor information. This runs as a local application
on the positioning system computer itself. The second system captures both 3D
sensor data from the positioning system and 2D images from a USB (Universal
Serial Bus) video camera. Due to the excessive overhead of running the video
capture and positioning algorithms on a single processor, this system operates on

two PC’s communicating via a peer-peer network connection.

The two data capture systems are described in more detail in the following

sections.

3D Data Capture

The 3D data capture system (GrabData) runs on the positioning system computer.
It is written in Pascal using the Borland Delphi compiler and uses OpenGL to
display the eight sensor positions on the display during capture. Using this
application, the capture rate is typically between 8 and 10 fps (frames per second).

Figure 3-5 shows this diagrammatically.
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The data format saved by the GrabData application is as follows:

The first entry in each file consists of 6 double-precision floating point values,

being the x and y co-ordinates of the three generator assemblies (they are assumed

to lie in the plane z = 0). These points are useful for establishing the initial size of

the scene during subsequent off-line inspection.

Following the header record are a variable number of fixed-length records

containing sensor data. Each record holds the position and orientations of all 8

sensors in a similar format to that returned directly by the positioning system.

The following tables show the details of these records.

48




File Header — 1 per file, 48 bytes starting at byte 0

Offset Length Type Description
0 8 double Generator 0 — x co-ordinate
8 8 double Generator 0 — y co-ordinate
16 8 double Generator 1 — x co-ordinate
24 8 double Generator 1 —y co-ordinate
32 8 double Generator 2 — x co-ordinate
40 8 double Generator 2 — y co-ordinate

Sensor Data — n per file, 456 bytes each, starting at byte 48

Offset Length Type Description

0 4 DWORD Timestamp — milliseconds from start

4 8 double Sensor 0 — x co-ordinate

12 8 double Sensor 0 — y co-ordinate

20 8 double Sensor 0 — z co-ordinate

28 8 double Sensor 0 — theta orientation (radians)
36 8 double Sensor 0 — phi orientation (radians)
44 8 double Sensor 0 — psi orientation (not used)
52 1 BYTE Sensor 0 — Valid (0 if invalid)

53 7 BYTE Filler

60 56 struct Sensor 1 position / orientation as above
116 336 struct Sensors 2 to 7 position / orientation
452 4 BYTE Filler

Tables 3-2a and 3-2b — 3D Data Capture File Format

3D Data Review

Data captured by the GrabData application can be examined off-line by using the

TrackView application. This application is written in MS VC++ and uses OpenGL

to render a 3D view of the captured sensor data.

Figure 3-6 overleaf shows an example of the TrackView display. In this example,

the generator positions are shown in blue, the fingertip sensors in green and the

palm sensors in red.
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Figure 3-6 — 3D Data Capture Review

The application allows the captured data to be replayed continuously or stepped

forward or backward frame by frame.

This application also implements a ‘virtual trackball’ which allows the scene to be
rotated in three dimensions using the mouse. A menu option allows display of an
optional trace of a configurable number of previous frames, so giving a visual
indication of speed and movement. There is also a menu option providing the
ability to export the captured positional data to a CSV (comma separated variable)

file.




3D and 2D Data Capture

This system for data capture consists of two parts. The first of these

(ImagerServer) runs on the positioning system computer. This application

communicates on the one hand to the COM object controlling the positioning

system hardware and on the other to a Windows Socket connection to provide the

ability to converse using TCP/IP with a second computer over a local area

network.
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Data

ImagerServer
Application

T

SOCKET

Network Interface

Network Interface

SOCKET
D 3
MultiGrab =l gl
AVI |¢———  Application |[€&— I 2!
Data 5 « @
=
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Figure 3-7 — “Synchronised” 3D and 2D Data Capture

The second part of this system (MultiGrab) runs on the aforementioned ‘second’

computer to which is also attached a USB video camera. This application

implements a Windows Socket connection to receive the sensor data from the
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ImagerServer on the positioning system computer and has an interface to the
Video Camera via a Video For Windows (VFW) driver. The complete set-up is

shown schematically in Figure 3-7.

The component parts of this system work together as follows —

After initialising the positioning system using stored calibration data, the
ImagerDriver application instructs the positioning system to begin sampling. It

then opens a socket and waits in ‘listen’ mode for an incoming connection.

On the second PC, the MultiGrab application initialises the VFW interface and
displays a video picture in preview mode. A menu option initiates the socket
connection to the positioning system PC. ImagerServer accepts the connection

and awaits instructions.

Having established a connection to the ImagerServer, MultiGrab requests details
of the generator positions to initialise the OpenGL scene and display the generator
positions on screen. ImagerServer supplies this data from the calibration file used

to initialise the positioning system.

MultiGrab now maintains a conversation with ImagerServer, repeatedly
requesting sensor data and displaying the results. When ImagerServer receives
such a request, the positioning system is instructed to pause sampling and return
the sensor data. This data is transmitted to MultiGrab and the positioning system

resumes sampling. On receipt of the sensor data, MultiGrab stores the sensor
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positions in member variables, issues a request for more data, then refreshes the
display to show the latest positions. This process occurs in a separate thread to the

Video preview which is active concurrently.

When MultiGrab is instructed via a menu option to begin recording, the Video
preview is stopped and a call-back function is used to intercept each video frame
as it is received. This function writes the video data along with the currently active

sensor data to an AVI (Audio Video Interleaved) file.

The AVI file contains two streams. The video stream is written in 24-bit RGB
colour uncompressed format intended for playback at 30 fps. The 3D data stream,
while updated less frequently (~10 fps) is written at the same time so each video
frame has a corresponding 3D data record. Due to the difference in sampling rates
and the lag involved in communicating with /magerServer, the 2D and 3D data
are not precisely synchronised although any such discrepancies are difficult to

observe when the data is replayed.

The format of the 3D data stream is kept as simple as possible. Each frame
consists of 30 single-precision floating point values. The first 6 of these contain
the (xy) co-ordinates of the generators and the remaining 24 contain the (xyz) co-
ordinates of the 8 sensors. The generator details are not necessary on each frame
but this does make it easier to subsequently view individual frames as all the

required 3D data is easily available.

Table 3-3 overleaf summarises the layout of the data in the 3D data stream.
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Offset Length | Type Description
0 4 float Generator 0 — x co-ordinate
4 4 float Generator 0 — y co-ordinate
8 4 float Generator 1 — x co-ordinate
12 4 float Generator 1 — y co-ordinate
16 4 float Generator 2 — x co-ordinate
20 4 float Generator 2 — y co-ordinate
24 4 float Sensor 0 — x co-ordinate
28 4 float Sensor 0 — y co-ordinate
32 4 float Sensor 0 — 7 co-ordinate
36 12 struct Sensor 1 position as above
48 72 struct Sensors 2 to 7 positions as above

Table 3-3 — Combined 2D/3D Data Capture Format

3D and 2D Data Review

The combined 2D and 3D data captured by MultiGrab may be reviewed offline by
the MultiView application. Again, this is written in C++ and uses OpenGL and

VFW (Video for Windows) to assist the display of the combined data.

r’} whiteglove_avi - Multiiew
File Edit “iew Help
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Figure 3-8 — 2D/3D Capture Review

Simple toolbar controls allow the data to be inspected frame by frame or for a
captured sequence to be replayed at normal speed. As with TrackView, a virtual

trackball may be used to examine the 3D sensor positions from any viewpoint.
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The combined 2D and 3D data captured using this technique are used to build
point distribution models (PDM’s) to attempt to model the characteristics of

particular hand shapes and movements. This is described below.

3.3 Modelling hand shape

3.3.1 Hybrid point distribution models

With the ability to automatically capture reasonably synchronised 2D and 3D data
from the new data glove, an obvious step was to attempt to reproduce this work of
Bowden et al. [5] to assess the effect that the availability of accurate 3D point data
might have on such a model. The software developed to pursue this course is

described in detail in the following sections.

3.3.2  Building hybrid PDM’s

The software developed for the PDM functions is all written in MS VC++ and
uses OpenGL for display of any 3D information. Three separate applications were
developed, primarily to assist testing of each stage but also to allow hand-coded
data to be introduced at various points to permit models to be built and

manipulated using data from other sources or systems.

The three PDM applications provide the following functionality:
e Selection of 3D/2D frames for use as training data
e Building a PDM from training data

e Display and manipulation of shapes generated by a PDM
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Selecting training data

The application developed to selected individual frames to form the training data
is called PDMSelect. This uses as input an AVI file produced by the MultiGrab

application described earlier.

PDMSelect allows individual frames to be selected as training examples for the
PDM. Each selected frame is written out as a separate bitmap to a destination
folder chosen at run time. Along with this set of bitmaps, a control file
(Control.txt) is placed in the same folder. This file contains details of the 3D data

points associated with each frame and is a text file in tab-delimited format.

Capturing data in this fashion allows the possibility of supplying data to the next

stage from another source. Figure 3-9 shows PDMSelect in action.
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Figure 3-9 — Selecting Training Data for the PDM
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Bitmaps are saved as uncompressed 24-bit RGB colour images 320 pixels wide by

240 pixels high. The tab-delimited control file contains one record for each

sample, terminated by a CR/LF sequence. The fields in each record are as follows:
e Bitmap filename (Framennn.bmp) — name of the image file for this frame.
e Number of values — the number () of float values on this record

e Values — the 3D point values themselves inx, y, z order

When used with the MultiGrab data, there are always 24 values (i.e. X, y and z for
each of 8 sensors) although the above format allows for different objects to be

modelled if required.

Building the model

The application which builds the PDM from training data in the above format is
called PDMBuild. This has a similar style to PDMSelect and implements the code
necessary to produce 2D contours from the bitmap images and to perform PCA on
the training set of combined 2D and 3D data by carrying out an eigenvector

decomposition of the covariance matrix.

As the successful production of a 2D contour depends in part on the content and
lighting conditions present for each frame, it is necessary to review the results for
each training sample and, if necessary, adjust conditions to achieve a satisfactory
result before the data is added to the training set. Figure 3-10 overleaf shows a
view of a successfully contoured image and the statistics produced once the

calculation of the model has completed.
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Figure 3-10 — Building the PDM

The process of producing a reasonable contour from the bitmap image involves

several steps. These are as follows:

1. The RGB image is binarised using a simple thresholding algorithm based on
the intensity of the red channel. This was found to be the most effective
method of segregating the mainly white glove from the dark background. The

threshold is adjustable using a modeless dialog box.
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2. As a first step in removing any residual ‘noise’ from the binarisation, the
position of the hand in the image is broadly located by identifying a large
block of consecutive black pixels near the bottom of the image. Using this as a
starting point, a flood-fill algorithm is used to initially isolate the hand shape
as a grey region in the black and white image. Any areas untouched by the

flood-fill are then set to white.

3. Next, to clean any residual noise from around the edges of the hand or fingers,
a majority filter is applied using a square 3x3 window. This produces a

reasonably smooth hand shape with no background noise.

4. A simple edge detection algorithm is next used to identify those areas where a
grey/white transition occurs. Such points are marked black and any remaining
grey is set to white. This results in a contour around the outside of the hand

shape although this may still contain internal ‘edges’.

5. The final stage is a contour walking algorithm which, having identified the
starting pixel of the contour in the bottom of the image, ‘rolls’ clockwise from
pixel to pixel around the exterior of the hand shape until the bottom of the
image is reached on the other side. The resulting contour is used as the basis

for the 2D information in the training example.

The results of applying each of the above steps are shown in Figure 3-11 (a) — (f)

overleaf.
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a) Original image b) After binarisation ¢) After flood / smooth

f) Final contour ¢) Contour walk d) Edge detect

Figure 3-11 — Producing a 2D Contour

Figure 3-11 (f) shows the final contour superimposed over the original image to

ensure that the contour is a fair representation of the original hand shape.

The points along the 2D contour are linearly resampled” for each training example
in order to standardise their length. This is configurable within the application but

is currently set at 300 (x, y) points per contour.

Each training vector is thus built up from a concatenation of the 24 values from
the 3D data (8 sensors times X, y, z) and 600 values from the 2D data (300 points
times X, y) which together identify a single point in a 624-dimensional space for

each training example.

3 As noted previously, this process will inevitably introduce non-linearity into the PDM as specific
landmark points are not aligned between training examples. If this presents a problem, it may be
possible to use a 2D projection of the 3D sensor data to identify points along the contour
corresponding roughly to the implied positions of the (bent or unbent) fingers based on the
positions of the fingertip sensors and to use these as more accurate landmarks.
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Having assembled a training set of example vectors, the mean shape is calculated
by finding the average vector and Principal component analysis (PCA) is
performed on the deviation of the example vectors from the mean using
eigenvector decomposition on the covariance matrix S of £ as described in section

2.2.2.

As the dimensionality of the data (624) is high, the techniques described in section
2.2.2 have been implemented in PDMBuild and produce a 15-fold decrease in run-
time for the calculation of a model with ~60 training examples. This calculation

takes only a few seconds on a 800MHz Pentium III system with 64Mb RAM.

Once the model calculations are complete, PDMBuild sorts the eigenvectors into
descending order of their eigenvalues and provides a graphical representation of
the training data in shape space by projecting each training vector onto the first
three eigenvectors to produce x, y and z co-ordinates. The 3D section of the
display may be selected to show the original training sample or the complete

shape-space projection by using a menu option.

An example of such a display is shown overleaf in Figure 3-12.

This feature is useful to gain an initial impression of the degree of non-linearity in
any model as it is sometimes fairly obvious (as in the above example) that the

training data are not uniformly distributed.
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Figure 3-12 — Training Data Projected from Shape Space

As well as building a PDM from the PDMSelect output, PDMBuild also has an
option to import combined or separate 2D and/or 3D data directly from a tab-
delimited text file. This option was used to test the PCA calculations by feeding
the program with generated data describing various poses of an anglepoise lamp.
Whilst only a 2D model, this data is known to exhibit non-linearity due to its
articulated structure and examples of the variation modes produced are available

in a number of publications for comparison.

Having calculated the PDM from training data, PDMBuild can save the model in a
compact form. The internally used format includes the mean shape, the
eigenvector array and associated eigenvalues and also the original training data
projections in shape space. This information may be used by the third of the PDM
applications to generate and display shapes using the model. This is described in

detail overleaf.
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Model display

The final PDM application is called PDMDisplay and takes as its input a model
generated by PDMBuild. This application can handle models which include any

combination of 2D and 3D information and is used to display generated shapes

from the model. An example display is shown in Figure 3-13.
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Figure 3-13 — Generating Shapes from a PDM

On loading a model, the familiar 3D / 2D split view initially displays the mean
shape. A spinner control near the top of the display allows selection of the mode
of variation and the adjacent slider permits the amount of variation to be set

between + 3 standard deviations.
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In a similar manner to PDMBuild, a view of the training data projections in shape
space may be selected to be shown in the left hand window. In such a display, the
training points are shown in red and the corresponding position of the currently
generated shape is shown in blue. By using the slider control to position the blue
marker towards a training point, it can be seen that the 2D contour adopts a more
plausible shape. Selecting a region of shape space in which there are no training
examples always results in a badly deformed display. This is further evidence of

the non-linear nature of the model.

PDMDisplay allows the variations of each mode to be set individually so that the
cumulative effect may be observed in the generated shape. As the models built so
far have large degrees of non-linearity, this application is so far only really useful

for validating the correctness of the calculations.

3.4 Exploring hidden Markov models

3.4.1 Introduction

As discussed in the previous chapter, HMM’s are likely to feature at some point in
this project. The motivation for developing the application described below, apart
from being an exercise to fix an understanding of the principles, is to provide a
method of creating, evaluating and manipulating HMM’s in a user-friendly

manner, primarily to prepare for applying these techniques to gesture recognition.
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3.4.2

HMM Workbench Application

This is a Microsoft C++ application using Microsoft Foundation Classes (MFC).

It has been designed in such a way that it allows a “working set” of HMM’s,

observation sequences and algorithm outputs to be created and persisted.

The application provides implementations of the algorithms described in the

previous section and also allows new observation sequences to be generated from

existing models.
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DEE & @& X & e (B =7
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EIE:;j todels
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----- T8 Model 2 - N=3, M=5 Mutder of sywbols (M) @ 2
----- T8 Madel 3-N=4, M=5
----- T2 Copyof Model 3-M=4,M|| State transition probability matrix (L)
2Bl Observation sequences
----- # Seql-M=5 1 z 3
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----- B Witerbi: Model 2, Seq 1 Cheservation symbol prokbability distributicon (EB)
----- B Baumwelch: Copy of Mo
al 2
1 0.5840780 0.,159220
2 0.608289 0.391011
3 0.777216 0.222754
Initial =state probabilitieszs (Pi)
1 0.332054
2 0.413133
4| I _PJ 3 0.249513 ;I
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Figure 3-14 — HMM Workbench application

Rabiner [23, 25] details a number of implementation issues for HMM’s, which

affect the way the algorithms must be implemented in a computer application.

Some of the techniques described have been implemented in the workbench

application. Figure 3-14 shows an example of the application GUI.
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Features

The HMM workbench currently provides the following basic features:

Creation of HMM model parameters A, with variable N and M.

¢ Initialisation of probabilities using random values.

e Export of model parameters to MATLAB format .MAT file.

e Creation of random observation sequences Ok with variable K, M and T.
e (Generation of sample observation sequences using a selected HMM.

e Implementations of Forward, Viterbi and Baum-Welch algorithms.

e On-screen or printed report of models, sequences, and algorithm results.

The implementations of the Forward, Viterbi and Baum-Welch algorithms use the

scaling procedures described in [23].

The use of scaling, particularly in the forward and backward variables, is
necessary to overcome the strong possibility that the limits of double-precision
arithmetic will quickly be exceeded when calculating cumulative probabilities.
For this reason, the final outputs from these algorithms are all calculated as
Log(P) where P is the probability. In this scenario, a lower number will imply a

stronger probability.

Figure 3-15 shows the dialog used to apply the above algorithms to selected

models and sequences.
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lwork with Models

Model 4 - N=3, M=5

Figure 3-15 — Applying HMM algorithms

The report below shows a sample of the output produced after using the Baum-

Welch algorithm to adjust model parameters based on an observation sequence.

Baum-Welch: Model 4 - N=3, M=5
Model parameters before optimisation:
Model 4 - N=3, M=5

Number of states (N) : 3
Number of symbols (M) : 5

State transition probability matrix (A)

1 2 3
1 0.191012 0.432064 0.376925
2 0.327904 0.645133 0.026963
3 0.328678 0.251862 0.419460

Observation symbol probability distribution (B)
1 2 3 4 5
1 0.100160 0.280099 0.273195 0.159676 0.186870
2 0.198439 0.164707 0.220740 0.098470 0.317643
3 0.315664 0.010025 0.330917 0.103970 0.239424

Initial state probabilities (Pi)

1 0.211719
2 0.138183
3 0.650098
Initial log probability P(O|Model) = -17.349739
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Final log probability P (O|Model) = -11.060943
Number of re-estimation iterations = 19

Model parameters after optimisation:
Model 4 - N=3, M=5

Number of states (N) : 3
Number of symbols (M) : 5

State transition probability matrix (A)

1 2 3
1 0.001317 0.629388 0.371295
2 0.506248 0.494747 0.001004
3 0.001603 0.999390 0.001007

Observation symbol probability distribution (B)
1 2 3 4 5
1 0.001001 0.627900 0.373092 0.001000 0.001006
2 0.001278 0.001220 0.413292 0.001000 0.587210
3 0.997783 0.001004 0.002074 0.001000 0.002139

Initial state probabilities (Pi)

1 0.001001
2 0.001001
3 0.999999

Generated sequence, M=5

—

Number of samples (K)

Number of symbols (M) : 5
Sample kl:
Number of observations (T) : 12

1 2 3 4 5 6 7 8 910 11 12
Symbols: 1 55 2 1 3 3 3 5 2 5 3

This report shows the model parameters before and after optimisation, the log

probability before and after, and the observation sequence used for training.

Implementation

The main HMM related functionality of the application is provided by the

following classes:

CMarkovModel - holds the model parameters A and the variables N and M.
Provides functionality for running the Forward, Backward,
Viterbi and Baum-Welch algorithms given an observation

sequence (CMarkovSequence). Also provides methods for
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generating observations based on the model parameters and

displaying itself on screen or printer.

CMarkovSequence - provides a way of holding a number of related

CMarkovSample

CMarkovReport

observation samples (CMarkovSample). This class maintains
the variable M (the alphabet size) and contains a collection of
CMarkovSample objects. A method is provided to generate a
number of random sample sequences of varying length. Also
provides a method to display itself and associated samples on

screen or printer.

- represents an individual observation sequence O of length 7.
Contains 7T observation symbols (integer based) and allows
storage of underlying states, one for each observation. The
states are set either by the Viterbi algorithm or when the
sequence is generated by a CMarkovModel. This class provides

a method to format itself for screen or printer display.

- represents the output from one of the HMM algorithms.
Contains textual information and a variable number of
CMarkovModel’s and/or CMarkovSequence’s. Provides the

ability to display itself on screen or printer.

Collections of the above classes are held by a CDocument derived object and form

the basis for the working view shown in Figure 3-14. All the classes are derived

from CObject to support serialisation.

As the sizes of the models and sequences (in terms of number of elements) are

variable, all probability distributions and observation sequences are held as

dynamically allocated arrays of pointer variables using a variation of the

techniques described in [22].
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4.1

Chapter 4 Current status

Data glove hardware

4.1.1 Limitations
Effective Range

As the original application of the positioning system was to provide an image of a
medical endoscope during colonoscopy, the design of the system was based
around dimensions appropriate to that use. As a result the effective field of

operation is roughly 1 m’.

This range is fine for the purposes of experimenting with a single data glove but
would not really be sufficient to cater for two gloves or for additional body
sensors if the system were to be used as part of a more comprehensive motion

capture application.

Number of Sensors

The Bladen positioning system allows for a maximum of 16 sensors. This easily
covers the intended endoscopy application but is barely sufficient for working
with more than one data glove at a time. One of the reasons for choosing an 8-
sensor data glove is that this allows the possibility of implementing a two-handed

system without the need for hardware changes.
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Speed

The Bladen system currently available for testing is actually one of the original
prototype systems developed by Dr. Bladen in 1993. Although the integral PC unit
has been upgraded from an MS-DOS based Intel 486 system to a Windows 98
Pentium class system, the remaining hardware is nearly 8 years old. Given the
increase in processing power achieved since then, the system performs very much
slower than would be possible with more modern equipment. The maximum data
capture rate possible with this original system appears in practice to be no more

than 10 fps (frames per second).

4.1.2 Planned improvements

A number of improvements to the Bladen positioning system are currently being
pursued by colleagues at the University of Newcastle. These include the

following:

Smaller Sensors

By using different materials for the sensor cores, the size of the original sensors
has been reduced with no loss of sensitivity. The ability to use smaller sensors will
give more flexibility in the choice of sensor sites and possibly allow the use of
more sensors in close proximity to instrument the joints of the hand more
precisely. This avenue is already being explored in Newcastle where an 11-sensor

glove is being tested.
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Larger Generators

More powerful field generators will possibly allow the generator assemblies to be
sited further apart than at present, thus extending the effective range. This avenue

is also being explored at the University of Newcastle.

Updated Hardware

David Geng, a PhD student at Newcastle, has recently proposed an updated
hardware configuration for some critical parts of the system. This involves the
introduction of an Intel ARM processor and a 48 channel A/D converter to allow

the use of more sensors.

At present, these changes are at an early but Mr. Geng has given his opinion that
the new configuration may be capable of providing real-time data capture at 50+
fps using 48 sensors. This would bring significant benefits were such

improvements to materialise.

4.2 Statistical modelling

4.2.1 Limitations

As discussed in section 2.2.3, using a linecar PDM to model the non-linear
movement of the hand is not ideal. The inability to locate matching landmark
points on each 2D contour compounds these problems and the resulting
distribution of points in shape space is decidedly non-uniform. At the current
stage of development, it is not possible to use these PDM’s without further

analysis.
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4.3

4.2.2 Planned improvements

A number of options are available for managing and overcoming the effects of

non-linearity in the models. These include:

e Using a clustering technique to segment data in shape space.
e Employing a 2D projection of the 3D sensor data to assist in the identification

of matching landmarks between training images.

Some recently published work suggests it may be possible to avoid the problem of

mismatching landmarks. This is an area which needs further investigation.

Allied to the above is the introduction of an HMM framework to the models. We
have a basic tool available to assist in this although the most appropriate use may
not become clear until the method for adapting the non-linear models has been
decided and implemented. This is the part of the project under investigation at the

time of writing.

Summary

4.3.1 Progress vs. objectives

Progress to date has been reasonably good. The availability of accurate 3D point
data gives an added impetus to the training of accurate statistical models. At the
time of writing, no published work has been found indicating that this is an area

currently being explored elsewhere.
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While it is by no means clear that the current path will lead to achievement of the

planned objectives, there are still many promising leads to follow.

Before more progress can be made in this direction, we first need to develop some
method of quantifying the accuracy of the existing models. Once we can do this, it
will be easier to establish where the boundaries should be between different
models and this should lead into the introduction of an HMM framework to

overlay everything. At that point a further review will be needed.

Until this stage, it will not be possible to put any of this work to the test with any
serious recognition tasks but it may be that some comparable results can be
obtained that will give us an indication of the strengths or weaknesses of these
developments. This should be borne in mind as the work progresses to ensure that

we make the most effective use of the 3D point data from the positioning system.

At present there is no evidence to suggest that the overall objectives cannot be

achieved, at least to some worthwhile degree. Until such evidence presents itself,

this project will continue in a spirit of optimism.
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