
Fast Registration of Medical Imaging Data Using

Optimised Radial Basis Functions

Roger Steven Rowland

June 2007

A Thesis submitted to the School of Computing Sciences

University of East Anglia

in Partial Fulfillment of the Requirement for

the Degree of Doctor of Philosophy in Computer Science

c©This copy of the thesis has been supplied on condition that anyone who consults it is

understood to recognise that its copyright rests with the author and that no quotation from

the thesis, nor any information derived therefrom, may be published without the author’s

prior, written consent.

Abstract

The ability to register medical images to align anatomical features accurately

has great benefits for clinical diagnosis, patient monitoring, education and sur-

gical planning. Since the 1990s, much research has gone into the development

of accurate methods for the non-rigid registration of medical image data in

two and three dimensions. It is generally true that more accurate registration

requires more computation and therefore more time.

With the growing development of computer assisted surgery applications

such as image guided surgery and surgical navigation, there is an increasing

need for fast and accurate non-rigid image registration, suitable for use intra-

operatively.

Within this thesis, we describe the techniques that underlie non-rigid reg-

istration, identify the time consuming tasks and develop methods to accelerate

the process while retaining acceptable registration accuracy. Specifically, we

provide both algorithmic and hardware-based acceleration of radial basis func-

tion evaluation – a common feature of many non-rigid registration techniques.

Using algorithmic acceleration with 2563 voxel synthetic data sets and 729

landmark pairs, we have achieved > 90% warping accuracy in 13 seconds (max-

imum error 2.8mm) and > 98.8% accuracy in 46 seconds (maximum error

1.6mm). Using a hardware implementation of the same technique gives > 80%

accuracy in 0.81 seconds (maximum error 1.4mm). Using real CT and MRI data

sets, each with 2563 voxels, we manually placed 53 landmarks and achieved a

visually acceptable non-rigid registration in 0.6 seconds.

i

Acknowledgements

First, I would like to acknowledge the support, advice, encouragement and

knowledge supplied by my supervisors – Dr. Rudy Lapeer and Dr. Mark

Fisher. In particular, Rudy’s knowledge and experience of augmented real-

ity, medical imaging and computer assisted surgery has been essential. Rudy

has also been responsible for nagging, cajoling, proof-reading, criticising and

general idea-bouncing – an enormously rewarding experience and an extremely

likeable character, a good friend. Thanks also go to all the PhD students in

the lab – Min Si Chen, Paul Gasson and Gerardo Gonzalez-Garcia with whom

I have exchanged advice and jokes in equal measure. Last but never least are

my friends and family, who have toiled along with me during the course of

this research, at times suffering more than myself. To my ex-wife and good

friend, Mary, our children, Georgia and William – who have always loved me

and supported me and given me the determination not to give up. To my

partner, confidante, soul-mate and inspiration, Su Yu, I can only say with all

honesty that, without you, none of this would have been completed – you are

my strength. To my loving, wise, long-suffering and disturbingly healthy and

happy parents, Jack and Nita – who have always supported me, always en-

couraged me to succeed, but have never pushed me – I owe you a lot, I really

do.

This thesis is dedicated to Georgia and William.

ii

Contents

List of Figures . viii

List of Tables . xii

List of Algorithms . xiv

List of Abbreviations . xv

1 Introduction 1

1.1 Medical imaging . 1

1.2 Medical image registration . 6

1.3 Applications of medical image registration 7

1.4 Thesis objectives . 8

1.5 List of contributions . 8

1.6 Organisation of the thesis . 9

2 Image registration – Background 10

2.1 General . 10

2.2 Rigid image registration . 11

2.3 Non-rigid image registration . 13

2.3.1 Point based registration methods 14

2.3.2 Surface based registration methods 17

2.3.3 Intensity based registration methods 18

2.3.4 Model based registration methods 19

2.3.5 Summary of non-rigid image registration methods 20

iii

CONTENTS iv

2.3.6 Transformation functions for non-rigid registration 21

2.4 Image registration in computer aided surgery 23

2.5 Fast non-rigid image registration 25

2.5.1 Motivation . 25

2.6 Summary . 27

2.6.1 Problem statement . 28

2.6.2 Discussion . 29

3 Radial basis functions for non-rigid registration 30

3.1 Introduction . 30

3.2 Radial basis functions . 31

3.3 The thin-plate spline . 32

3.3.1 Solving the TPS transformation in 3D 33

3.4 Choice of radial basis function . 37

3.5 Measuring the accuracy of a warp 39

3.5.1 Mean squares . 40

3.5.2 Mean reciprocal square differences 41

3.5.3 Mutual information . 41

3.5.4 Mattes mutual information 42

3.5.5 Normalised mutual information 43

3.5.6 Correlation coefficient . 43

3.5.7 Cardinality match . 43

3.6 Design of synthetic test data . 44

3.6.1 The ground truth . 46

3.6.2 Regular linear gradient . 47

3.6.3 Irregular linear gradient 48

3.6.4 Checkered cube plus noise 49

3.6.5 Non-linear gradient . 50

3.6.6 Deforming the ground truth 51

CONTENTS v

3.7 Choice of image similarity metric 53

3.8 Experimental methods . 55

3.9 Solving the warping function . 56

3.9.1 Forward mapping versus backward mapping 58

3.9.2 Interpolation during backward mapping 59

3.10 Evaluating the warping function 59

3.10.1 Warping function evaluation techniques 61

3.11 Brute force evaluation in software 62

3.11.1 Overview . 62

3.11.2 Algorithm implementation 62

3.12 Brute force evaluation - hardware accelerated 63

3.12.1 Overview . 63

3.12.2 Algorithm implementation 64

3.13 Grid based evaluation - hardware assisted 66

3.13.1 Overview . 66

3.13.2 Algorithm implementation 67

3.14 Software accelerated “Fast RBF” evaluation 68

3.14.1 “Fast RBF” evaluation in three dimensions 69

3.14.2 “Fast RBF” implementation 73

3.14.3 Anterpolation . 75

3.14.4 Coarse level summation 77

3.14.5 Interpolation - completing the warp evaluation 78

3.15 Hardware accelerated “Fast RBF” evaluation 79

3.15.1 Overview . 79

3.15.2 Algorithm implementation 80

3.16 Test plan . 82

3.17 Summary . 85

CONTENTS vi

4 Experimental results 87

4.1 Synthetic data tests . 87

4.1.1 Test 1 - Brute force evaluation in software 88

4.1.2 Test 2 - Brute force evaluation - hardware accelerated . . 95

4.1.3 Test 3 - Grid based evaluation - hardware assisted 97

4.1.4 Test 4 - Software accelerated “Fast RBF” evaluation . . . 102

4.1.5 Test 5 - Hardware accelerated “Fast RBF” evaluation . . 105

4.1.6 Test 6 - Varying the number of landmarks 113

4.2 Visible Human data tests . 124

4.2.1 Test 7 - CT and MRI registration 125

4.3 Summary . 135

5 Discussion 138

5.1 The effect of test data design on the NMI metric 139

5.2 Tri-linear interpolation versus nearest-neighbour 140

5.3 How does the choice of the RBF affect each warp evaluation

technique? . 141

5.4 Limitations of the grid-based evaluation 143

5.5 Behaviour of the “Fast RBF” technique with varying H 144

5.6 Behaviour of the “Fast RBF” technique with varying number of

landmarks . 145

6 Conclusions and future work 149

6.1 Conclusions . 149

6.2 Summary of contributions . 152

6.3 Future research . 152

A Software design 154

A.1 Experimental software design . 154

A.2 Manual landmark identification 154

CONTENTS vii

B Full experimental results 157

B.1 Results for φ(r) = r . 157

B.1.1 Regular linear gradient synthetic test data 157

B.1.2 Irregular linear gradient synthetic test data 159

B.1.3 Checkered cube with random noise synthetic test data . . 161

B.1.4 Non-linear gradient synthetic test data 163

B.2 Results for φ(r) = r2 log r . 165

B.2.1 Regular linear gradient synthetic test data 165

B.2.2 Irregular linear gradient synthetic test data 167

B.2.3 Checkered cube with random noise synthetic test data . . 169

B.2.4 Non-linear gradient synthetic test data 171

C Programmable shaders - source code 174

C.1 Brute force hardware evaluation 174

C.1.1 Source code for φ(r) = r 174

C.1.2 Source code for φ(r) = r2 log r 178

C.2 “Fast RBF” hardware evaluation 182

C.2.1 Source code for φ(r) = r 182

C.2.2 Source code for φ(r) = r2 log r 191

List of Figures

1.1 Example images from different medical imaging modalities. . . . 5

2.1 A square grid undergoing rigid and affine transformations. 12

2.2 A square grid undergoing projective and curved transformations. 13

2.3 A selection of fiducial markers used for medical image registration

or image guided treatment. 15

2.4 A stereotactic frame used for image guided neurosurgery. 16

3.1 The TPS basis functions φ(r) = r2 log r and φ(r) = r. 38

3.2 CT and MRI images showing areas of homogenous intensity. . . . 45

3.3 Basic component of synthetic test data. 46

3.4 Synthetic data - regular linear gradient. 47

3.5 Synthetic data - irregular linear gradient. 48

3.6 Synthetic data - checkered cube plus noise. 49

3.7 Synthetic data - non-linear gradient. 50

3.8 Selected landmark pairs in synthetic test data. 52

3.9 Various 3D views of synthetic data sets for φ(r) = r. 54

3.10 Cross section of synthetic cube data set showing tearing artifacts

caused by forward mapping. 58

3.11 Brute force evaluation - hardware accelerated. 65

3.12 Regular grid, triangulated for better interpolation, demonstrat-

ing warping of vertices. 66

viii

LIST OF FIGURES ix

3.13 Regular grid, triangulated for better interpolation, demonstrat-

ing warping of texture coordinates (shown in red). 68

3.14 Example of X (blue) and Y (red) grids for “Fast RBF” in 2D –

yellow points indicate landmarks. 74

3.15 A single (yellow) landmark within grid Y, showing the elements

of interpolation weights for nodes A (green) and B (blue). 76

3.16 “Fast RBF” evaluation - hardware accelerated. 81

4.1 Brute force software evaluation, with tri-linear interpolation, us-

ing RBF φ(r) = r2 log r. 91

4.2 Brute force software evaluation, with nearest-neighbour sam-

pling, using RBF φ(r) = r2 log r. 92

4.3 Brute force software evaluation, with tri-linear interpolation, us-

ing RBF φ(r) = r. 94

4.4 3D difference image of φ(r) = r2 log r and φ(r) = r results(inverted

and gamma adjusted for clarity, γ = 0.5). 95

4.5 Diagram showing what is meant by ‘a grid with a size of four’. . 98

4.6 Results for φ(r) = r and φ(r) = r2 log r for different grid sizes. . . 101

4.7 Results for software “Fast RBF” showing φ(r) = r and φ(r) =

r2 log r metrics for different values of H. 107

4.8 Accuracy of φ(r) = r and φ(r) = r2 log r for different values of

H by test data type – software implementation. 108

4.9 Results for hardware “Fast RBF” showing φ(r) = r and φ(r) =

r2 log r metrics for different values of H. 111

4.10 Accuracy of φ(r) = r and φ(r) = r2 log r for different values of

H by test data type – hardware implementation. 112

4.11 Empirical evaluation of TPS solution time with varying number

of landmarks. 116

LIST OF FIGURES x

4.12 Effect of the number of landmarks on run time of the brute force

software implementation. 117

4.13 Effect of the number of landmarks on run time of the brute force

hardware implementation. 118

4.14 Effect of the number of landmarks on run time of the grid-based

implementation. 119

4.15 Effect of the number of landmarks on run time of the “Fast RBF”

software implementation – H = 0.015. 120

4.16 Effect of the number of landmarks on run time of the “Fast RBF”

software implementation – H = 0.025 . . . 0.055. 121

4.17 Effect of the number of landmarks on run time of the “Fast RBF”

software implementation – H = 0.065 . . . 0.105. 121

4.18 Effect of the number of landmarks on run time of the “Fast RBF”

hardware implementation – H = 0.015. 123

4.19 Effect of the number of landmarks on run time of the “Fast RBF”

hardware implementation – H = 0.025 . . . 0.055. 123

4.20 Effect of the number of landmarks on run time of the “Fast RBF”

hardware implementation – H = 0.065 . . . 0.105. 124

4.21 3D reconstructions using Visible Human data sets. 124

4.22 Manual selection of homologous landmarks on CT and MRI data. 126

4.23 A sample 2D slice from the MRI data set, before and after warping.127

4.24 Merged images of colourised CT data (blue) and MRI data (yel-

low), before and after registration. 128

4.25 Differences between brute force and “Fast RBF” software imple-

mentation using H = 0.025. 130

4.26 Differences between brute force and “Fast RBF” hardware im-

plementation using H = 0.025. 131

LIST OF FIGURES xi

4.27 A cutaway view of the bony structures segmented from the CT

data set. 133

4.28 Colourised slices from the warped MRI data and segmented CT

data. 134

4.29 A cutaway 3D view of the combined MRI and CT data showing

a detailed area. 135

4.30 Maximum accuracy measured based on NMI score for each tech-

nique using φ(r) = r. 136

4.31 Accuracy versus time for all techniques using φ(r) = r. 137

5.1 Ratios of average warp evaluation time, φ(r) = r2 log r : φ(r) =

r, for each technique. 141

5.2 Average effect of the number of landmarks on run time of the

“Fast RBF” software implementation – H = 0.065 . . . 0.105. . . . 146

5.3 Effect of the number of landmarks on valid Y nodes in the “Fast

RBF” implementations – H = 0.065 . . . 0.105. 146

5.4 Correlations between valid Y nodes and landmark numbers with

time in the “Fast RBF” implementations – H = 0.065 . . . 0.105. . 148

A.1 Screenshot of 3DWarpDX, the experimental software 155

A.2 The experimental software control panel 156

A.3 A screenshot section showing matching landmark points on source

and target images . 156

List of Tables

1.1 Typical spatial resolution of medical imaging modalities. 6

3.1 TPS basis functions for different orders m of derivatives in the

functional and different image dimensions d. 34

3.2 Spatial distortions in millimetres in the synthetic test data. . . . 53

3.3 Similarity metrics - descriptions and benchmarks. 55

4.1 Brute force evaluation in software - performance and accuracy. . 89

4.2 Gold standard for φ(r) = r. 95

4.3 Gold standard for φ(r) = r2 log r. 96

4.4 Summary of hardware accelerated brute force results. 96

4.5 Spatial errors in millimetres from the brute force hardware warp. 97

4.6 Summary of grid based evaluation using a grid of size 125. 99

4.7 The effect of grid size on run time and accuracy. 100

4.8 Summary of software “Fast RBF” evaluation using H = 0.025. . 103

4.9 Spatial errors in millimetres from the “Fast RBF” software eval-

uation using H = 0.025. 103

4.10 The effect of parameter H on run time and accuracy for the

software “Fast RBF” method. 104

4.11 Spatial errors in millimetres from the “Fast RBF” software eval-

uation for different values of H, using φ(r) = r. 106

xii

LIST OF TABLES xiii

4.12 Spatial errors in millimetres from the “Fast RBF” software eval-

uation for different values of H, using φ(r) = r2 log r. 106

4.13 Summary of hardware “Fast RBF” evaluation using H = 0.025. . 109

4.14 Spatial errors in millimetres from the “Fast RBF” hardware eval-

uation using H = 0.025. 110

4.15 The effect of parameter H on run time and accuracy for the

hardware “Fast RBF” method. 113

4.16 Spatial errors in millimetres from the “Fast RBF” hardware eval-

uation for different values of H, using φ(r) = r. 114

4.17 Spatial errors in millimetres from the “Fast RBF” hardware eval-

uation for different values of H, using φ(r) = r2 log r. 114

4.18 Predictions of warp times for the grid-based method. 119

List of Algorithms

1 warp(x, y, z) : Evaluate warping function for a given point. . . . 60

2 Brute force evaluation in software. 63

3 Grid based evaluation - hardware assisted. 67

4 “Fast RBF” evaluation - anterpolation for p = 2. 77

5 “Fast RBF” evaluation - coarse level summation stage. 78

6 “Fast RBF” evaluation - interpolation stage. 79

xiv

List of Abbreviations

List of abbreviations used in this thesis :

2D – Two dimensional

3D – Three dimensional

AR – Augmented reality

ASM – Active shape model

CAS – Computer aided surgery

CC – Correlation coefficient

CM – Cardinality match

CPU – Central processing unit

CT – Computed tomography

DM – Digital mammography

DR – Digital radiography

EBS – Elastic body spline

FAIR – Fast automatic image registration

FAIR-II – Fast automatic image registration 2

FEM – Finite element method

FFD – Free form deformation

FGT – Fast Gauss transform

FLE – Fiducial localization error

FMM – Fast multipole method

fMRI – Functional magnetic resonance imaging

xv

List of Abbreviations xvi

FPGA – Field-programmable gate array

FRE – Fiducial registration error

GEBS – Gaussian elastic body spline

GPU – Graphics processing unit

ICP – Iterative closest point

IGS – Image guided surgery

LAN – Local area network

MFC – Microsoft foundation classes

MI – Mutual information

MMI – Mattes mutual information

MQ – Multi-quadric

MRI – Magnetic resonance imaging

MRSD – Mean reciprocal square differences

MS – Mean squares

NMI – Normalised mutual information

NNI – Nearest neighbour interpolation

PC – Personal computer

PDE – Partial differential equation

PDF – Probability density function

PET – Positron emission tomography

PVI – Partial volume interpolation

RAM – Random access memory

RBF – Radial basis function

RMS – Root mean square

SAM – Statistical appearance model

SGI – Silicon Graphics Incorporated

SM3 – Shader model 3.0

SN – Surgical navigation

List of Abbreviations xvii

SPECT – Single photon emission computed tomography

TPS – Thin-plate spline

TRE – Target registration error

TRI – Tri-linear interpolation

US – Ultrasound

VHP – Visible human project

Chapter 1

Introduction

1.1 Medical imaging

Since the initial development of techniques to produce digital images of the

human body in the latter half of the last century, there has been an enormous

amount of scientific research and development in this area.

The ability to visualise structures and tissues inside the body is now an

essential and commonplace diagnostic tool. A variety of techniques are em-

ployed to produce images in two or three dimensions and in some cases these

are viewed over time to show, for example, a 3D image of a beating heart.

To produce an image it is necessary to expose the patient to some form

of energy, which interacts in some way with the tissues of interest. Different

types of energy interact with different types of tissue in different ways and with

some techniques there is a risk of damage to the patient as an effect of the

imaging process. The different techniques are known as image modalities and

are characterised by their ability to visualise particular tissues, their sensitivity,

image resolution and effect on the patient.

All of these factors are taken into account when deciding the most appropri-

ate method to use for a particular patient or condition. According to Bushberg

1

Introduction 2

et al. [20], examples of the more commonly used modalities for digital imaging

are as follows :

Digital radiography (DR) uses an x-ray source on one side of the patient

and a (typically flat) electronic x-ray detector on the other side. A short

pulse of x-rays, less than 0.5 seconds, passes through the patient towards

the detector. The x-rays that enter the patient’s body are modified by the

extent to which they are scattered and absorbed (attenuated) by individ-

ual tissues. As the attenuation properties of skin, bone, air, etc. within

the patient are different, the distribution of x-rays that hits the detector

forms a radiographic image which can be used for diagnostic purposes.

Radiographic images are used for a wide range of pathologies, including

broken bones, lung cancer and cardiovascular disorders.

Digital mammography (DM) is digital radiography of the breast. In prin-

ciple this is the same as digital radiography except that much lower x-ray

energies are used than in any other radiographic technique. For this rea-

son, digital mammography uses x-ray machines and detectors that have

been specifically designed for the purpose. Mammography is used for

breast cancer screening as well as for diagnostic purposes.

Computed tomography (CT) was the first computerised medical imaging

modality and became clinically available in the 1970s. CT passes x-rays

through the patient at many different angles by rotating the x-ray source

around the body. One or more linear detector arrays collect the x-rays af-

ter they have passed through the body and a computer synthesises the re-

sults into a tomographic image – a slice through the body. One advantage

over digital radiography is that each slice can be produced without the

presence of any overlying or underlying structures. Multiple CT slices can

be reconstructed by computer to form a 3D image of the patient, which

Introduction 3

allows it to be used for a wide range of diagnostic purposes, including

tumour identification, ruptured discs, subdural haematomas, aneurysms

and other pathologies.

Single photon emission computed tomography (SPECT) is a tomographic

technique which is based on nuclear medicine imaging. In this technique a

substance containing a radioactive isotope is administered to the patient

either orally, by injection or by inhalation. This radioactive substance

will distribute itself in the patient according to some physiological sta-

tus – for example it may be designed to concentrate in cancerous tissues.

To produce the tomographic images, a nuclear camera records x-ray or

gamma-ray emissions from the patient from a series of different angles

and, in a similar way to CT, this information is synthesised into tomo-

graphic slices. SPECT images provide information on functional aspects

of the patient’s physiology rather than purely structural.

Positron emission tomography (PET) is similar to SPECT in that the im-

ages are produced by measuring emissions from the patient’s body. In

PET, it is positrons (positively charged electrons) which are used and

these are emitted by some radioactive isotopes such as fluorine 18 and

oxygen 15. These radioisotopes are incorporated into a compound which

will localise in the body in a similar way to SPECT. The decay of the

isotope produces a positron which immediately combines with an elec-

tron, producing energy known as annihilation radiation. This is similar

to gamma-ray emission except that two photons are emitted in almost ex-

actly opposite directions. A ring of detectors around the patient detects

the photon pairs and records the line through the patient along which the

decay event must have occurred. By combining many such detections, it

is possible to compute the 3D distribution of the radioisotope and pro-

duce a series of tomographic emission images. Like SPECT, PET is used

Introduction 4

for functional imaging of the brain and for imaging primary tumours and

their metastases.

Magnetic resonance imaging (MRI) is a tomographic technique which uses

a strong magnetic field and takes advantage of the nuclear magnetic res-

onance properties of the proton [115]. The proton is the nucleus of a

hydrogen atom, which is prevalent in biological tissues. The patient is

placed in the magnetic field and a pulse of radio waves is generated by

coils around the patient. The protons in the patient’s tissues absorb the

radio wave energy and re-emit it after a time that depends on the mag-

netic properties of the surrounding tissue. The emitted radio waves are

detected by the coils surrounding the patient. By changing the magnetic

field strength as a function of spatial location – using a magnetic field gra-

dient – the proton resonant frequency will vary as a function of position.

The MRI scanner uses the frequency and phase of the returning radio

waves to determine the position of each signal from the patient and so

build up a set of tomographic images through the body. MRI can provide

exceptional quality of images for tissues containing different amounts of

fat or water. Brain and spine imaging are common applications of MRI.

Ultrasound (US) uses mechanical energy, in the form of high frequency sound

waves, to produce images of internal structures in the body. A short

pulse of sound is generated by a transducer in contact with the patient’s

body and the sound waves travel into the tissues and are reflected by

the internal structures, causing echoes. The reflected echoes are detected

by the transducer, which uses them to build a profile of the structures

along that path. The sound beam is swept over a range of angles and

the reflection from each scan line is recorded and used to generate the

ultrasound image. US is used widely during pregnancy to monitor the

growing foetus and is also used to detect structural abnormalities of the

Introduction 5

kidneys, liver, pancreas and spleen.

(a) DR. (b) DM. (c) CT.

(d) SPECT. (e) PET. (f) MRI.

(g) US.

Figure 1.1: Example images from different medical imaging modalities.

Figure 1.1 shows example images from each of the above modalities1. Fig-

ure 1.1a shows a digital chest x-ray, Figure 1.1b shows a digital mammogram of

a normal breast, Figure 1.1c shows an abdominal CT slice, Figures 1.1d, 1.1e

and 1.1f show SPECT, PET and MRI images of the brain respectively, and

Figure 1.1g shows an ultrasound scan of a human foetus.
1Unless otherwise stated, images are courtesy of Wikipedia Commons.

Introduction 6

In addition to the differences in tissue type that these imaging modalities

target, they also have different ranges of spatial resolution, which limit the size

of feature which can be resolved clearly. Table 1.1, from Bushberg et al. [20],

shows typical values for spatial resolution in millimetres for each of the above

modalities.

Modality Abbreviation Spatial resolution (mm)

Digital radiography DR 0.17

Digital mammography DM 0.05 – 0.10

Computed tomography CT 0.4

Single photon emission tomography SPECT 7.0

Positron emission tomography PET 5.0

Magnetic resonance imaging MRI 1.0

Ultrasound (5MHz) US 0.3

Table 1.1: Typical spatial resolution of medical imaging modalities.

1.2 Medical image registration

Because different imaging modalities can provide different but complementary

information about the condition of an individual patient, it has become increas-

ingly desirable to be able to ‘fuse’ the images from two or more modalities in

order to provide a better visualisation for diagnostic use.

It is common to combine CT and MRI data to provide a composite view

of bony structures and soft tissues, each of which is obtained from only one

modality [63, 69, 83, 108]. Also, combining functional data from PET or SPECT

with structural data from CT or MRI can provide diagnostic benefits [75, 117,

157, 163].

However, combining data from different imaging modalities is not straight-

Introduction 7

forward. Problems with patient position, organ deformation or motion, differing

spatial resolutions and even non-linear distortions introduced by the imaging

modality itself (e.g. MRI) make this a complex task. The process of fusing

image data from more than one modality so that there is a sufficiently good

spatial alignment of anatomical structures is called image registration and this

is described in more detail in Chapter 2.

1.3 Applications of medical image registration

Apart from diagnostic use, medical image registration is also used in computer

aided surgery (CAS) applications. These include surgical navigation (SN), im-

age guided surgery (IGS), augmented reality (AR) [160] and surgical simulation.

For many surgical procedures – for example endoscopic sinus surgery [24, 25],

brachytherapy of cranial tumours [8, 9], pelvic surgery [70], cryotherapy of the

liver and neurosurgey [182] – the task of the surgeon can be greatly assisted

by providing an integrated view of the patient’s body during the operation

enhanced with medical image data from pre-operative scans of the same patient.

In this way, it can be possible to provide the surgeon with visual informa-

tion of the underlying and surrounding structures at the actual operation site.

Where it is important to avoid nerve damage – for example in maxillofacial

surgery – or to navigate efficiently to the area of interest – for example in en-

doscopic sinus surgery – it is obviously of great benefit to have the ability to

overlay the patient data from e.g. an MRI scan onto the surgeon’s view through

a stereo microscope or endoscope.

For this type of application, speed of image registration is as important as

accuracy.

Introduction 8

1.4 Thesis objectives

The main focus of the research presented in this thesis is to develop methods to

accelerate the process of non-rigid medical image registration in three dimen-

sions so that the run time performance and registration accuracy are suitable

for use in intraoperative CAS applications.

Section 2.6.1 in Chapter 2 gives a concise statement of intent.

1.5 List of contributions

This thesis makes the following contributions :

1. Extends the “Fast RBF” evaluation formulation introduced by Livne and

Wright [101] to three dimensions and applies it to mono-modal synthetic

data and multi-modal medical image data.

2. Develops a software implementation of the “Fast RBF” algorithm and

demonstrates its speed and accuracy using synthetic data and real medical

image data.

3. Develops a hardware implementation of the “Fast RBF” algorithm and

demonstrates its speed and accuracy using synthetic data and real medical

image data.

4. Demonstrates the ability to balance speed and accuracy in the “Fast RBF”

technique by adjusting a single run time parameter.

5. Demonstrates the execution time behaviour of the “Fast RBF” technique

when supplied with an increasing number of inputs.

6. Demonstrates the importance of appropriate design of synthetic test data

when assessing the accuracy of optimised warp evaluation techniques.

Introduction 9

1.6 Organisation of the thesis

This chapter has presented an overview of the work and some background infor-

mation about the application areas, which set the context for forming specific

objectives. The remainder of this thesis addresses these objectives in the fol-

lowing manner:

Chapter 2 presents a review of previous work and background information,

which covers registration of multi-modal medical images and, in partic-

ular, non-rigid registration techniques. The chapter concludes with a

concise statement of the objectives of the thesis.

Chapter 3 gives more specific details of the application of radial basis func-

tions and particularly the thin plate spline, in the context of non-rigid

registration, and describes the methods developed to accelerate the appli-

cation of these functions using both hardware and software optimisations.

Chapter 4 presents the experimental results of the non-rigid registration tech-

niques developed in Chapter 3, using both synthetic test data and real

medical imaging data sets.

Chapter 5 discusses a number of issues raised by the experimental results,

offering explanations for some and identifying others as subjects for po-

tential future work.

Chapter 6 provides a concluding summary of the work, lists the contributions

of the thesis and presents ideas and suggestions for future research in this

area.

Chapter 2

Image registration –

Background

2.1 General

Image registration is a requirement that has existed for almost as long as we

have had the technology necessary to produce digital images. The ability to

align two or more images, from different viewpoints, taken at different times,

or with different image sensors has various applications [196]. For example :

• Environmental monitoring;

• Satellite analysis of land usage;

• Weather forecasting;

• Security monitoring;

• Target recognition;

• Medical applications.

The last item in this list, medical applications, is the primary area of interest

for this thesis. As we suggested in the introductory chapter, there are a number

10

Image registration – Background 11

of uses for image registration in a medical context. We might wish to regis-

ter data from the same patient (i.e. intrasubject) but obtained from different

imaging modalities (e.g. CT, MRI and ultrasound for structural analysis, or

PET, SPECT and fMRI for functional analysis). This is known as multi-modal

registration. Alternatively, we may wish to register data from the same patient

using the same imaging modality but at different times (e.g. to assess tumour

growth or treatment progress). This is called multi-temporal registration. Fi-

nally, we may wish to register data from a single imaging modality but for a

number of different patients (i.e. intersubject), for example to produce an at-

las – a statistical map of a certain part of the body – which can subsequently

be employed for image registration, image guided surgery, or to assist segmen-

tation where image contrast is poor [38, 55, 145]. This is particularly applicable

to brain imaging, where it is important to identify individual structures in the

brain which may not be easily identified from the image data alone [180].

2.2 Rigid image registration

Early image registration techniques were focused on 2D images and rigid1 trans-

formations, later extending to affine2 transformations – Figure 2.1 shows some

simple 2D examples. Brown’s 1992 survey [18] gives a comprehensive picture

of the state of the art at that time.

However, in the medical context, rigid and affine transformations are not

sufficient. Human bodies, although similar, cannot be modeled by combinations

of linear transformations. Organs within the body will deform locally due to

differences between patients, patient position in the imaging device, tumour

growth or other physiological aspects. In fact, even breathing and heartbeat

may have a significant effect. In addition, some imaging modalities, particularly
1Rigid implies just translation and/or rotation transformations.
2Affine means rigid plus scaling and/or shearing.

Image registration – Background 12

(a) Square grid. (b) Rigid. (c) Affine.

Figure 2.1: A square grid undergoing rigid and affine transformations.

MRI, introduce their own non-linear distortions [20], which have to be taken

into account when performing multi-modal registration or even mono-modal

registration between different makes or models of scanner. In 2004, Wang et

al. [179] employed a 3D phantom to accurately measure the geometric distortion

inherent in a number of clinical MRI systems. In this study, geometric errors

ranged from 10 to 25 millimetres within a 240 × 240 × 240mm3 volume and

could not be reduced along the axis normal to the image plane, making this a

significant problem in 3D registration.

The limitations of rigid image registration were already apparent by 1997

when the survey by Maintz and Viergever [106] listed not only rigid and affine,

but also projective and curved transformations among the registration tech-

niques for medical imaging. While an affine transform will map parallel lines

onto parallel lines, a projective transformation will map parallel lines onto lines

that may not be parallel. A curved transformation will map lines onto curves

and is sometimes called an elastic transformation. Figure 2.2 shows examples

of these additional transformations.

Image registration – Background 13

(a) Square grid. (b) Projective. (c) Curved.

Figure 2.2: A square grid undergoing projective and curved transformations.

2.3 Non-rigid image registration

For the majority of medical imaging applications and particularly for multi-

modal registration, a non-linear transformation – one that provides for some

localised stretching of the image – is the accepted technique. In most published

work, such techniques are termed non-rigid rather than non-linear, referring to

the nature of the object(s) being registered rather than the techniques being

used.

In 1996, Little et al. [99] approached non-rigid registration by first decom-

posing the problem into a number of rigid transformations. The technique was

applied to spinal images, where rigid matching on individual vertebrae was

followed by an approximation of the overall deformation by smooth interpola-

tion. In 1998, Maintz et al. [105] adopted a similar approach by partitioning

the image data into a number of ‘windows’ on which local, rigid registration

is performed before forming a global transformation by combining the individ-

ual results. More recent work continues with similar piecewise or hierarchical

registration methods, for example Pitiot et al. [125] and Likar and Pernus [98].

A number of publications show that non-rigid registration gives better re-

sults than rigid registration where deformable soft tissue is involved. For ex-

ample, in 1998, Rueckert et al. [34, 146, 148] demonstrated the superiority of

free-form deformations based on B-splines when compared to rigid and affine

transformations applied to MRI breast images, and, in 2003, Fei et al. [41]

Image registration – Background 14

showed that non-rigid warping consistently outclassed rigid body registration

for prostate and pelvic MRI data.

In addition to multi-modal image registration for visualisation purposes,

non-rigid registration is also used for motion tracking [22, 23, 130, 143, 147] and,

more recently, quantification of growth and motion [2, 144].

Typically, non-rigid registration of two medical images initially involves the

identification (either manually or partially automated) of correspondences be-

tween the images, followed by a transformation which maps one image onto

the other. The goal is to bring together the anatomically homologous loca-

tions of the two images. The methods used to register two medical images

can be grouped into four main categories, which we will discuss in more detail

individually. The categories are :

• Point based,

• Surface based,

• Intensity based, and

• Model based.

2.3.1 Point based registration methods

Point based methods involve the identification of a set of corresponding points

in the images being registered. This process may be manual [95, 96] or semi-

automated [12, 97, 151, 181], although it can be very difficult to automate land-

mark identification with accuracy from the medical image data alone, except in

particular cases where the anatomy lends itself to conventional image process-

ing or computer vision techniques. This problem can be mitigated by the use of

specific markers, attached externally or internally to the patient’s anatomy and

which can be easily identified by the imaging modality [112, 150]. Maintz and

Image registration – Background 15

(a) Adhesive. (b) Percutaneous. (c) Internal.

Figure 2.3: A selection of fiducial markers used for medical image registration

or image guided treatment.

Viergever [106] categorised these as intrinsic and extrinsic registration methods

respectively.

As intrinsic registration methods rely only on data available from the im-

ages themselves, the selection of landmarks is sometimes a time-consuming

manual process [63, 64, 66], although some researchers have attempted to auto-

mate this by performing some analysis of the image data to identify features

that may be useful for matching, such as corners, edges or extreme curva-

ture [12, 97, 107, 188]. Such techniques typically include an additional phase

whereby landmark positions are optimised by maximising a similarity measure

between the registered images in an iterative procedure [46, 47, 74, 139, 194].

Section 3.5 in Chapter 3 provides more detail about similarity measures used

in this context.

Markers used for extrinsic registration may be attached to the patient inter-

nally or externally and are known as fiducial markers. Internal fiducial markers

include small wires or coils, inserted either surgically or percutaneously prior to

imaging. External markers include objects which may be stuck to the patient’s

skin, screwed into bone, or otherwise attached to a rigid part of the anatomy,

for example a stereotactic frame or a dental moulding [9, 37]. Figure 2.3 shows a

Image registration – Background 16

Figure 2.4: A stereotactic frame used for image guided neurosurgery.

number of examples of fiducial markers; Figure 2.3a shows an adhesive marker

designed to be attached to a patient’s skin, Figure 2.3b is a percutaneous marker

used – in this instance – for image guided spinal surgery, and Figure 2.3c shows

a VISICOILTM linear fiducial soft tissue marker, which is designed to be used

for image guided radiation therapy. Figure 2.4 shows a stereotactic frame being

used for a neurosurgical procedure.

It is arguably much easier to automate the identification of fiducial markers

in medical image data as they are specifically designed for that purpose. How-

ever, there are practical limits on their application for non-rigid registration

because it is not feasible to insert them anywhere and everywhere. The use of

fiducial markers places additional steps into the imaging procedure, which may

be time consuming and uncomfortable for the patient and, with both internal

and external fiducial markers, there is still potential for movement.

In general, point based registration methods have the advantage that it is

usually faster to compute the mapping transformation than it is with surface

based or intensity based registration because the number of landmark pairs is

normally much smaller than the number of pixels or voxels in the image data.

Image registration – Background 17

However, this also means that the transformation is calculated without any

reference to the intensity values in the underlying data with the result that

poor placement of landmarks may leave areas with real local deformation un-

affected. To overcome this problem, point based methods have been combined

with surface or intensity based methods [175, 188], for example by dynamically

creating or adjusting landmark positions based on local or global similarity

measurements [12, 43, 122, 139], or by using automatically placed landmarks

as a convenient starting point for surface based or intensity based registra-

tion [89, 151, 156].

2.3.2 Surface based registration methods

As the name implies, surface based registration requires the extraction of equiv-

alent surfaces from two images in order for a mapping transformation to be

derived. As Maintz and Viergever note [106], the surfaces to be registered must

first be segmented from the raw image data. The implication of this is that the

registration accuracy is dependent on the accuracy of the surface segmentation,

which can be particularly difficult in some imaging modalities – for example,

ultrasound [60, 158, 185].

Combining surface based registration with other techniques is not uncom-

mon. Maurer et al. [113] combine surface and point based registration tech-

niques and Betke et al. [12] supplement automated landmark detection in chest

and lung images by using a surface based registration technique based on the

iterative closest point (ICP) algorithm [11].

Generally, surface based registration techniques have been confined to neuro-

imaging and orthopaedic applications [106] and, while intermodal registration

is certainly possible using this technique [5, 39, 73, 75, 108, 166], computer-aided

surgery (CAS) and image-guided surgery (IGS) applications [52, 60, 62, 67, 185],

as well as atlas-based brain mapping and segmentation [42, 50] form a large part

Image registration – Background 18

of the more recently published work. Audette et al. [5] provide a useful survey

of some of the algorithmic techniques used for surface registration, particularly

for medical applications.

In the field of computer-aided surgery, Hardy et al. [58] report surface reg-

istration for endoscopic sinus surgery as a superior technique in terms of time

and accuracy when compared to landmark and fiducial registration methods.

However, other studies have shown [75, 91, 184] that surface based registration

techniques are still inferior to intensity based methods.

2.3.3 Intensity based registration methods

Intensity based – or voxel based – registration methods require less pre-processing

than point based and surface based methods. As intensity based methods op-

erate directly on the grey values in the images, they do not need prior identifi-

cation of matching landmarks nor segmentation to extract surfaces.

In recent years, intensity based methods have become one of the most heav-

ily researched non-rigid image registration techniques [196], the most prevalent

of which use mutual information (MI) – first introduced by Viola and Wells [177,

183] – as a measurement of image similarity [3, 32, 79, 126, 128, 146, 158]. An

overview of MI based registration methods is given by Maes et al. [103, 104],

who originally worked independently in this area at around the same time as

Viola and Wells.

While many intensity based registration methods use the whole image – ig-

noring any geometrical features of the objects of interest – there have been a

number of approaches which combine the image similarity measure with a regu-

larisation term to constrain the deformation. Examples are Maintz et al. [105],

Rueckert et al. [149] and Rohlfing et al. [137]. In any case, all of these meth-

ods involve an iterative optimisation process in which the parameter space of

the spatial transformation is ‘explored’ by the optimisation algorithm until the

Image registration – Background 19

similarity measure reaches a global maximum. Therefore, one important char-

acteristic of the optimisation process is the ability of the algorithm to converge

on the true global maximum rather than being trapped by one or more local

maxima.

So, although not hindered by a manual or semi-automatic pre-processing

step, in common with all iterative procedures, the speed of an intensity based

registration technique is dictated by three attributes :

• The time necessary to calculate the similarity measure.

• The time required to apply a transformation to the source image.

• The number of iterations required before convergence.

2.3.4 Model based registration methods

Model based registration methods are those that attempt to produce a model of

the deformation field based on the physical characteristics of the organ or tissues

of interest. As it is usually an expensive computational process to perform the

modeling exactly, there is often a need to compromise registration accuracy so

that a simplified approximation of the physical system can be used, which is

able to be calculated more quickly.

Bajcsy and Kovačič [7] first used an elastic model for matching CT data with

an atlas of the brain. Subsequent work by Gee et al. [49] built further on this

approach. Various other extensions of elastic modeling have been proposed [61,

80, 82, 111, 123, 189].

Another model based approach involves the finite element method (FEM).

This is an engineering technique whereby the area of interest is subdivided into

an interconnected mesh of elements, each of which has attributes consistent with

the properties of the underlying physical feature or tissue. Deformations are

then modeled by displacing the nodes in the mesh according to some outside

Image registration – Background 20

influence while constraining their motion based on an energy function which

involves the individual properties of each node. Bro-Nielsen [14] used FEM

for both image registration and surgical simulation [15–17]. While FEM ap-

plications are often concerned with surgical simulation (for example [86, 87]),

they have been used, with varying degrees of success, for performing image

registration [28, 42, 51] or validating other image registration techniques [155].

Other model based techniques include those based on fluid dynamics [26, 33],

which use the Navier-Stokes equations, and optical flow techniques [30, 53, 76,

92, 164, 169]. Registration using fluid dynamics is slow when compared to other

non-rigid registration techniques [187], which makes it unsuitable for intra-

operative AR and other applications which require fast registration. Optical

flow techniques build an array of displacement vectors to model the deformation

field which requires identification of similar intensity values in the two images

and is therefore more suitable for mono-modal registration.

In 2006, Petrovic et al. [124] demonstrated that it is possible to integrate

segmentation, modeling and registration into a single framework by using a

set of 32 MRI brain images to train a model to analyse the structure of an

unknown brain image. This work is built on techniques based around Active

Shape Models (ASM) and Statistical Appearance Models (SAM) and aims to

provide a robust method for deriving a set of deformation fields defining the

correspondences between the images, a classification of voxels into different

tissue types and a statistical representation of the shape variability across a set

of similar images.

2.3.5 Summary of non-rigid image registration methods

Point based methods require identification of homologous points on the images

being registered. This is often a manual process and therefore slow and prone

to error. Semi-automatic landmark placement is possible but also prone to er-

Image registration – Background 21

ror. However, once the landmarks are placed, calculation of the transformation

function is typically faster than with the other methods because the number of

landmarks is small in comparison to the number of voxels in the image.

Surface based methods require a segmentation step, which adds time and

introduces another potential source of error. However, for certain well-defined

structures – particularly in MRI brain images – this technique is more suitable

than point based registration [55, 73, 108].

Intensity based techniques have become increasingly popular, partly be-

cause the need for time-consuming manual pre-processing steps is reduced or

avoided completely. However, these techniques involve iteration, which consists

of repeated transformations and similarity measurement, both of which can be

lengthy.

Model based methods have the potential to achieve more accurate registra-

tions for certain applications – for example, when modeling tissue deformation

during surgery. However, the non-parametric transformations involved in many

of the model based techniques are more computationally intensive than any of

the other methods and, in general, more knowledge is required about the phys-

ical characteristics of the objects in the image data.

2.3.6 Transformation functions for non-rigid registration

Various transformation functions have been proposed and used for non-rigid

medical image registration. In contrast to rigid or affine registration functions,

which operate globally, non-rigid transformations allow local deformation and

the deformation field can be calculated in two ways – using either parametric

or non-parametric methods.

Among the parametric methods are those based on B-splines, which have

been employed generally for curve and surface representation since the 1970s. B-

splines have local support, which means that they are zero outside a sub-region.

Image registration – Background 22

Non-rigid registration techniques may either utilise B-splines directly [74, 82, 83,

142, 156, 168, 191] or may employ the Free-Form Deformation approach (FFD)

in which the object to be registered is embedded within a B-spline object [68,

102, 109, 137, 146, 149, 192]. Lee et al. [90] proposed a multi-level approach for

fitting a 2D cubic B-spline surface to scattered data, which overcame the nor-

mally problematic issues associated with conventional least-squares fitting by

using a coarse-to-fine hierarchy of control lattices to generate a sequence of

B-splines whose sum approaches the required interpolation. Later, Tustison et

al. [172–174] generalised this technique to N-dimensions and allowed an arbi-

trary degree of B-spline.

Parametric methods with global support – registering the whole image –

include techniques which use the thin-plate spline (TPS) [6, 27, 40, 69, 73, 81,

117, 139, 161, 163, 175, 181]. The TPS is an interpolating function, which maps

corresponding control points exactly. It is a special type of radial basis function

(RBF) which minimises the curvature of the displacement field resulting in a

smooth deformation. Other RBFs have also been proposed which, unlike the

TPS, have local support – for examples see Fornefett [45] and Rohde [133].

In 2006, Zagorchev and Goshtasby [193] produced a comparative study of

transformation functions for non-rigid image registration, which included two

RBFs in its comparison – the TPS and the multi-quadric (MQ) [56, 57]. The

TPS and MQ transformations were favoured over piecewise linear and weighted

mean transformations when there were relatively few point correspondences

(less than one thousand) and the variation in spacing between the points was

not large.

Non-parametric transformation methods calculate the deformation of each

voxel directly and although more flexible than those using basis functions, are

usually more computationally intensive. Examples include many of the model

based registration techniques described at the end of the previous section. In

Image registration – Background 23

particular, methods using optical flow [30, 53, 76, 92, 164, 169] and fluid dynam-

ics [26, 33].

In recent years, techniques using elastic body splines (EBS) have been pro-

posed, particularly those based on Gaussian forces (GEBS) [80, 189]. These

splines are the result of a physical model in the form of analytical solutions

of the Navier equation and describe elastic deformations of physical objects.

Kohlrausch et al. [80] report that the use of GEBS is particularly useful in

medical image registration where the geometric differences between the images

are caused by tissue deformation due to surgical intervention or pathological

processes. This makes them suitable for intra-subject mono-modal registration

applications.

2.4 Image registration in computer aided surgery

The term computer aided surgery, or CAS, covers a wide range of applications.

These include :

Surgical planning This covers pre-operative image processing and visualisa-

tion, image registration and surgical simulation. Multi-modal images may

be registered [67, 70] and visualised [24] to assist the surgeon in planning

the operation [65, 195] and it may be possible to use the pre-operative

image data to simulate the surgical procedure itself.

Surgical navigation This refers to the precise guidance of surgical tools and

instruments [131] as well as the intraoperative imaging processes which

support this – for example, endoscopy [25, 58], ultrasonography [185], in-

terventional CT/MRI [167, 186] and surgical stereoscopic displays. Posi-

tional tracking of surgical tools is essential and image registration between

preoperative and intraoperative images is complementary but important.

Augmented reality (AR) [160] may be employed to provide an overlay

Image registration – Background 24

of CT or MRI data on the intraoperative endoscope or microscope view,

or to give visual feedback of a ‘virtual’ surgical tool in an image of the

patient’s CT or MRI image data.

Treatment Although there is some overlap with surgical navigation, this area

also includes applications such as surgical robotics [52], surgical laser

treatments, radiotherapy [77, 162] and image guided surgery (IGS) [60,

150, 182]. Also in this category are patient monitoring systems – e.g. for

anaesthesia delivery – and the design and production of medical prosthetic

devices.

Training This area has techniques in common with surgical planning. Visual-

isation of medical image data for education purposes, surgical simulations

for training [14, 16, 17, 85], and other technologies that support the pro-

cess of decision making in surgery. The use of force feedback devices

(haptics) can be used to familiarise surgeons with a realistic ‘feel’ of a

surgical procedure as part of their training [48, 84].

From the above descriptions, it is evident that image registration is an

important component of CAS applications. No single medical imaging modal-

ity covers all requirements. Additionally, in surgical applications, imaging de-

vices for intraoperative use are typically surgical microscopes, endoscopes, ul-

trasound, and eyesight. For effective application of CAS, these images must

be combined with preoperative image data, and this requires fast and accurate

image registration.

Some CAS applications already use rigid registration. In 2002, Muratore

et al. [118] were able to register CT and 3D ultrasound (US) images using a

phantom to assess the feasibility of performing surface based registration on a

limited part of the vertebral surface. Recently, Leroy et al. [93] report results

of intensity based rigid registration of 3D ultrasound with CT images of the

Image registration – Background 25

kidney, concluding that the performance depends on a number of manual pre-

processing steps although accuracy and computation time are encouraging.

Non-rigid image registration is computationally more expensive than rigid

registration [106] and this makes it time consuming to obtain accurate results.

CAS applications often require intraoperative registration of multi-modal medi-

cal image data and in these situations it is desirable to achieve fast and accurate

non-rigid registration to avoid unnecessary delays to the procedure and associ-

ated discomfort and potential risk to the patient.

2.5 Fast non-rigid image registration

2.5.1 Motivation

In Section 2.3 we classified non-rigid registration techniques as point based,

surface based, intensity based and model based. Each of these has advantages

and disadvantages.

Previous work directed at improving the speed of non-rigid medical image

registration has primarily targeted intensity based methods. The pre-processing

steps in point based and surfaced based methods, and the inherent complexity

of model based methods make this a logical choice.

In 2002, Ourselin et al. [120] described a parallel architecture consisting of

five dual-processor PCs connected by an Ethernet LAN and running a version

of their own non-rigid registration algorithm reported in a previous work [119].

Each PC utilised two Pentium III 933MHz processors and this configuration

achieved a non-rigid registration time of 95 seconds using 256× 256× 26 voxel

MRI data with 512× 512× 28 voxel CT data.

Ino et al. [72] presented a parallel algorithm using the hierarchical FFD

method described in [149, 154]. The implementation ran on a cluster of 64 off-

the-shelf PCs (with 128 processors) and used three techniques: data distribu-

Image registration – Background 26

tion, data-parallel processing, and dynamic load balancing to perform non-rigid

registration of CT images of the liver. The images were 512× 512× 159 voxels

and the registration time of 12 hours on a single processor was reduced to eight

minutes on the 128 processor cluster.

In 2003, Shekhar et al. [159] introduced a hardware based architecture,

which they named fast automatic image registration or FAIR. The system is

based on intensity based registration using MI as the optimisation criterion. The

calculation of the MI metric is accelerated by custom built hardware, which uses

a combination of pipelining and parallel memory access and offers the potential

for further acceleration with the use of distributed computing. In 2005, the same

group reported a proof of concept implementation, named FAIR-II [21], which

achieved 100-fold speed improvement for MI calculation when compared with a

single processor implementation using a 3.2GHz Pentium III Xeon workstation.

No results were reported for overall warp evaluation performance. The FAIR-II

hardware was implemented in a PCI prototype board using an Altera Stratix

EP1S40 FPGA running at an internal frequency of 200MHz.

Rohlfing and Maurer [136] also presented a parallel implementation of non-

rigid registration, this time using 64 processors on a 128-CPU shared-memory

supercomputer (SGI Origin 3800). The algorithm in this implementation was

again an intensity based method, using normalised mutual information (NMI)

as a similarity metric and a modified version of the B-spline FFD approach

described in [149]. The study showed that execution times for some applications

could be reduced from a number of hours to less than one minute although the

authors rightly commented that the availability of high performance shared-

memory parallel supercomputers in the operating theatre is not a foreseeable

scenario at present.

In 2004 and 2005, Levin et al. [95, 96] proposed a method for accelerating

point based non-rigid registration by using the fast tri-linear interpolation ca-

Image registration – Background 27

pability of modern graphics cards. Their implementation evaluates a TPS warp

at discrete points on a configurable sized grid which overlays each image data

slice. Interpolation by the graphics card is used to estimate the intensity values

of the voxels within each grid cell. Using data sets of 512×512×173 voxels and

92 user-defined landmarks, registration time was reduced from 148.2 seconds

using a brute force implementation to 1.63 seconds using the grid based warp.

This technique is discussed in greater detail in Section 3.13.

Klein et al. [78] present a comparison of acceleration techniques for non-

rigid medical image registration. In this study, the authors examine techniques

to accelerate intensity based registration by producing a faster convergence in

the iteration phase of the process.

2.6 Summary

Much of the previous work on the acceleration of non-rigid image registration

has been focused on parallel hardware implementations of well-known regis-

tration techniques. Other groups have attempted to accelerate the calculation

of MI based image similarity metrics or to obtain faster convergence for the

optimisation step in intensity based registration.

However, an important component of all non-rigid registration methods is

the evaluation of the transformation function and this is also an area that can

be a candidate for acceleration. For RBF based transformation functions there

are a number of techniques which can in theory be used for medical image

registration, although at the time of writing, this has not been reported.

In 1992, Beatson and Newsam [10] described mathematical techniques for

rapid evaluation of RBFs based on hierarchical and multipole expansions. In

2005, Roussos and Baxter [140] presented another technique for rapid RBF eval-

uation, this time using the Fast Gauss Transform (FGT). More recently, Livne

and Wright [100, 101] have presented initial numerical results for fast evaluation

Image registration – Background 28

of smooth RBFs in two and three dimensions using tensor product interpola-

tion, which claims lower algorithmic complexity than the other methods.

2.6.1 Problem statement

This thesis is directed at the general problem of accelerating the performance

of non-rigid medical image registration. In particular, we will develop methods

that accelerate the evaluation of the transformation function, specifically we

will target parametric transformation functions based on radial basis functions.

We will answer the following questions :

1. How much can we optimise the run time of a RBF based warp evaluation?

2. What effect do such optimisations have on warping accuracy?

3. How do these optimised techniques behave under different inputs?

4. Are the optimised methods accurate and/or fast enough for AR applica-

tions?

To answer these questions, we will do the following :

1. Design and implement an experimental software application to control all

testing and to record results.

2. Design and build synthetic test data sets, which will allow us to evaluate

the accuracy of a warp and the suitability of different image similarity

metrics.

3. Implement brute force warp evaluation techniques in both software and

hardware versions.

4. Implement the grid-based warping technique of Levin et al. [95, 96] to

compare with new, optimised implementations.

Image registration – Background 29

5. Extend the formulation of Livne and Wright [101] to three dimensions,

adapt it for medical image registration and implement it in both software

and hardware versions.

6. Perform a structured test to evaluate all algorithms under a range of

inputs and parameters.

2.6.2 Discussion

The reasons behind the choices in the previous section are as follows :

• Accelerating the evaluation of the transformation function will potentially

benefit all non-rigid warping methods.

• RBF based transformations are a common choice for non-rigid registra-

tion.

• CAS applications require fast and accurate non-rigid registration and of-

ten use calibration objects which can assist point based registration tech-

niques.

• Many existing non-rigid acceleration techniques require additional hard-

ware, sometimes costly. We will use consumer level hardware only.

Chapter 3

Radial basis functions for

non-rigid registration

3.1 Introduction

This chapter provides details of the general theory of radial basis functions

(RBF) as applied to non-rigid registration and describes the methods we have

developed to accelerate the application of these functions using both hardware

and software.

The chapter begins with a description of the mathematical techniques we

will use to solve and evaluate RBF based warping functions, then continues with

the methods we will employ to compare results, before describing the creation

of synthetic test data and the algorithmic and implementation techniques we

have used to accelerate performance.

To complete the chapter, we devise a formal test plan, the results of which

will answer the questions addressed by this thesis as summarised in Section 3.17.

The results themselves are presented in Chapter 4 and discussed in Chapter 5.

30

Radial basis functions for non-rigid registration 31

3.2 Radial basis functions

The RBF method is one of the most widely used techniques for approximating or

interpolating scattered data in multiple dimensions [19]. Practical applications

include 2D and 3D image mappings, interpolation of meteorological data from

scattered monitoring stations, measurement of sea temperature distribution

from discrete samples, and neural network learning situations. There is also a

long list of mathematical applications, which includes the numerical solution of

partial differential equations (PDE).

When considering interpolation, the aim is to approximate a real-valued

function f(x) for which we have a finite set of values f = (f1, . . . , fN) at the

distinct points X = {x1, . . . , xN} ⊂ Rd. In this situation, we can choose a RBF,

s(x), to represent such an approximation, which has the general form :

s(x) = p(x) +
N∑

i=1

λiφ (|x− xi|) , x ∈ Rd (3.1)

where p is a polynomial, λi is a real-valued weight, φ is a basis function1,

and |x − xi| is the Euclidean distance between x and xi. So, a RBF could be

described as a weighted sum of a radially-symmetric basis function, augmented

by a polynomial term.

The basis function, φ, can take different forms, each of which is suitable for

particular types of applications. Some common choices for φ are :

• The Gaussian : φ(r) = e−αr2

• The multi-quadric : φ(r) =
√

r2 + c2

• The thin-plate spline : φ(r) = r2 log r

• The biharmonic spline : φ(r) = r

• The triharmonic spline : φ(r) = r3

1The late William Light advocated the term basic function [94].

Radial basis functions for non-rigid registration 32

where r is Euclidean distance and c and α are constants. The Gaussian basis

function is used for neural networks, the multi-quadric inter alia for fitting

topographical data, the thin-plate spline (TPS) for fitting smooth functions

of two variables and the polyharmonic splines for fitting to functions of three

variables.

The last three spline functions in the above list share the property that they

minimise specific energy quantities [138, 178], which makes them the smoothest

interpolators. As such, these functions are suitable candidates for the non-rigid

registration of multi-modal medical image data in two and three dimensions.

We will implement a general method for solving and evaluating these functions,

based on the thin-plate spline.

3.3 The thin-plate spline

The thin-plate spline is the 2D generalisation of a cubic spline. It was first

generalised in mathematical terms by Duchon [35, 36] and Meinguet [116], and

later by Wahba [178] and is widely used for encapsulating coordinate mappings

in two-dimensional space. Bookstein [13] used thin-plate splines as a technique

for modelling biological shape change and described an algebraic approach using

matched pairs of landmarks. This produces a smooth deformation that can be

used as an interpolant between the source and target spaces. As with all RBFs,

the landmarks do not need to be regularly spaced and the TPS formulation

guarantees to fit all landmark points exactly while minimising an approximate

curvature over the whole deformed surface. Bookstein defines the 2D TPS

function as :

f(x, y) = a1 + axx + ayy +
n∑

i=1

λiφ (|Pi − (x, y)|) (3.2)

where a1, ax and ay are the coefficients of an affine transformation, which

represents the behaviour of f at infinity. The remaining part of the function is

Radial basis functions for non-rigid registration 33

a weighted sum of the basis functions φ(r) where r is the Euclidean distance

between the point (x, y) and each landmark point Pi. The structure of the TPS

function reflects the general RBF formulation in Equation 3.1. As noted in

Section 3.2, the basis function for a thin-plate spline in two dimensions takes

the following form :

φ(r) = r2 log r (3.3)

The TPS transformation is invariant under translation and/or rotation of

either set of landmarks, the only restriction being that landmark points may

not be co-linear. The function f(x, y) minimises the following quantity, which

represents the bending energy of a thin metal plate on point constraints [138,

178] : ∫∫
R2

((
∂2f

∂x2

)2

+ 2
(

∂2f

∂x∂y

)2

+
(

∂2f

∂y2

)2
)

dxdy (3.4)

As a result of TPS analysis, it is possible to produce a function that maps

any point in the two-dimensional source space to its corresponding point in the

target space in a manner which is least ‘bent’ and which interpolates smoothly

between the known matching landmarks.

However, for deforming three-dimensional medical imaging data, it is nec-

essary to extend the TPS formulation.

3.3.1 Solving the TPS transformation in 3D

To solve the TPS transformation in three dimensions, we follow the procedure

formulated by Lapeer in 1999 [86, 88].

Extending Bookstein’s two dimensional TPS function (Equation 3.2) to

three dimensions gives us the following :

f(x, y, z) = a1 + axx + ayy + azz +
n∑

i=1

λiφ (|Pi − (x, y, z)|) (3.5)

Radial basis functions for non-rigid registration 34

d = 1 d = 2 d = 3 d = 4

m = 1 −1
2r – – –

m = 2 1
12r3 1

8π r2 log r − 1
8π r –

m = 3 − 1
240r5 − 1

128π r4 log r 1
96π r3 1

64π2 r2 log r

m = 4 1
10080r7 1

4608π r6 log r − 1
2880π r5 − 1

1536π2 r4 log r

Table 3.1: TPS basis functions for different orders m of derivatives in the

functional and different image dimensions d.

Table 3.1 from Rohr [138, p. 195] lists the TPS basis functions that min-

imise the bending energy in systems of different dimensions, which – ignoring

constants – shows that the RBF we need for 3D applications is φ(r) = r.

The energy quantity minimised by Equation 3.5 using φ(r) = r is the three

dimensional extension of Equation 3.4 [138, 178] :

∫∫∫
R3

((
∂2f

∂x2

)2

+ 2
(

∂2f

∂x∂y

)2

+ 2
(

∂2f

∂x∂z

)2

+
(

∂2f

∂y2

)2

+ 2
(

∂2f

∂y∂z

)2

+
(

∂2f

∂z2

)2
)

dxdydz (3.6)

Numerical implementation

The input to the TPS transformation is an arbitrary set of paired landmarks,

each pair representing the 3D coordinates of the same feature in the source and

target spaces. We wish to derive the mapping function f , which maps the set

of n source points to the corresponding n target points :

(x′n, y′n, z′n) = f(xn, yn, zn) (3.7)

By redefining Equation 3.5 in matrix form, we can describe the set of linear

equations constituting this transformation by five matrices. Disregarding the

Radial basis functions for non-rigid registration 35

affine element for the moment, the weighted sum in Equation 3.5 can be written :

CR = Y (3.8)

Where C is an n×n matrix defined in terms of the distances between the source

landmark points :

C =



φ(r1,1) φ(r1,2) φ(r1,3) · · · φ(r1,n)

φ(r2,1) · · · · · · · · · φ(r2,n)
... · · · · · · · · ·

...

φ(rn,1) φ(rn,2) φ(rn,3) · · · φ(rn,n)


(3.9)

where

ri,j = |(xi, yi, zi)− (xj , yj , zj)| (3.10)

which represents the Euclidean distance between two source landmark points

and φ(r) is the RBF.

The matrix Y is a n × 3 matrix containing the coordinates of the target

landmarks :

Y =



x′1 y′1 z′1

x′2 y′2 z′2

x′3 y′3 z′3
...

...
...

x′n y′n z′n


(3.11)

The n × 3 matrix, R, is the matrix of TPS parameters which we wish to

compute :

R =



λx1 λy1 λz1

λx2 λy2 λz2

λx3 λy3 λz3

...
...

...

λxn λyn λzn


(3.12)

Note that, from Equation 3.8, we could compute the TPS parameters by eval-

uating R = C−1Y .

Radial basis functions for non-rigid registration 36

We construct a fourth matrix, A, which is an n× 4 matrix formed from the

source landmark positions representing the affine part of the transformation :

A =



1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

...
...

...
...

1 xn yn zn


(3.13)

Using these four matrices, together with a 4 × 4 zero matrix, O, we create

a single, large matrix L as follows :

L =

 C A

AT O

 (3.14)

The matrix L represents a system of linear equations which we need to

solve :

V = L−1Y (3.15)

This system of equations may be solved by a number of techniques, such as

Gaussian elimination or LU Decomposition [129]. The resulting matrix V has

the following form :

V =



λx1 λy1 λz1

λx2 λy2 λz2

λx3 λy3 λz3

...
...

...

λxn λyn λzn

tx ty tz

sxx sxy sxz

syx syy syz

szx szy szz



(3.16)

Radial basis functions for non-rigid registration 37

The first n rows of V are the TPS parameters (i.e. the matrix R), while the

bottom 4× 3 part of the matrix contains the coefficients of the affine transfor-

mation that can be rewritten as a 4× 4 homogenous transformation matrix T

as follows :

T =



sxx syx szx tx

sxy syy szy ty

sxz syz szz tz

0 0 0 1


(3.17)

So, using the weights from matrix R and the linear transformation T , we

can transform any point (x, y, z) in the 3D source space to its corresponding

position (x′, y′, z′) in the target space, by evaluating Equation 3.7, where :

f(x′, y′, z′) = T



x

y

z

1


+

n∑
i=0

((λxi, λyi, λzi)φ(|(xi, yi, zi)− (x, y, z)|)) (3.18)

The experimental software we develop will use the above approach to solve

the system of linear equations in the matrix L (Equation 3.15) while allowing

us to plug in a choice of RBF. Subsequently, by evaluating (for all points in

the source data) Equation 3.18 using the calculated coefficients, we can apply a

non-linear warp to synthetic and real-world three-dimensional data sets to allow

us to explore the performance and accuracy of different RBFs and alternative

software implementations.

3.4 Choice of radial basis function

As noted in Section 3.3, thin-plate splines are a special class of RBFs, which

minimise the bending energy of a thin plate [19, 35, 138]. The basis functions

Radial basis functions for non-rigid registration 38

Figure 3.1: The TPS basis functions φ(r) = r2 log r and φ(r) = r.

possessing this property depend only on the order of derivatives in the func-

tional, m, and the image dimension, d [178, pp. 31–32]. Nevertheless, for these

experiments, we are primarily concerned with optimising performance rather

than evaluating the accuracy of different basis functions.

As we noted in Section 3.3.1, Table 3.1 suggests that the basis function

(disregarding constants) for minimising the bending energy in a system with

three dimensions is φ(r) = r which has the obvious advantage that it is faster

to compute than the 2D TPS basis function shown in Equation 3.3. However,

as φ(r) = r is only C0 continuous in its centre (see Figure 3.1), we will also

consider φ(r) = r2 log r, which is C1 continuous in its centre. This will be

important for better justification of the “Fast RBF” warp evaluation technique

as described in Section 3.14.

Therefore, to properly examine the behaviour and performance for the par-

ticular area of interest of this thesis, we will compare results for both of these

basis functions.

Radial basis functions for non-rigid registration 39

3.5 Measuring the accuracy of a warp

Measuring the performance in terms of speed is straightforward, but for assess-

ing the accuracy of a warp, we need not only ground truth data but also an

objective method to compare the result of a warp to the ground truth.

For rigid, point-based registration, Maurer et al. [112, 114] suggested three

useful error measurements for analysing registration accuracy :

• Fiducial Localization Error (FLE) – the error in locating fiducial points

• Fiducial Registration Error (FRE) – the root-mean-square (RMS) dis-

tance between corresponding fiducial points after registration

• Target Registration Error (TRE) – the displacement between homologous

points other than fiducial points, after registration.

The authors found that, when FRE and FLE are measured in the RMS sense,

then FRE approaches FLE (from below) with increasing N (the number of

fiducial points), and that, for a given N , TRE is proportional to FLE. In 1998,

Fitzpatrick et al. [44] derived an equation that allowed an approximation of the

RMS value of TRE to be calculated where the ground truth data is not known.

For non-rigid registration, however, the situation is different. Over the

years, there have been many metrics and methods proposed for producing some

objective measurement of image similarity for assessing or guiding image reg-

istration [31, 32, 54, 106, 152, 153, 177]. There are obvious differences between

techniques to measure similarity of mono-modal images compared with those

for multi-modal images. In the former, one can assume similar image content

and similar intensity values – perhaps after rescaling – which is very different

to the multi-modal case. When comparing CT with MRI, for example, each

modality targets different types of tissue – CT being ideal for bony structures

and contrast enhanced tissues, while MRI is better for soft tissue. In the multi-

Radial basis functions for non-rigid registration 40

modal scenario, probabilistic metrics such as Mutual Information [177] are one

of the most popular used today.

As we have control over the experimental set-up, we can design synthetic

data that takes into consideration the characteristics of one or more image

similarity metrics we might use, in order to produce a realistic reflection of

registration accuracy. The test data we will use for the experiments is detailed

in Section 3.6, but first we will review some of the available metrics [71] that

we might employ for measuring image similarity. These are as follows :

• Mean squares (MS)

• Mean reciprocal square differences (MRSD)

• Mutual information (MI)

• Mattes mutual information (MMI)

• Normalised mutual information (NMI)

• Correlation coefficient (CC)

• Cardinality match (CM)

3.5.1 Mean squares

The mean squares metric is the simple mean squared voxel-wise intensity dif-

ference between two images. The ideal value of this metric – i.e. for identical

images – is zero. This is suitable only for images obtained from the same

modality and with the assumption that the intensity values representing the

same point must be identical.

This metric is calculated as

MS(A,B) =
1
N

N∑
i=1

(Ai −Bi)2 (3.19)

Radial basis functions for non-rigid registration 41

where Ai is the i-th voxel of image A, Bi is the i-th voxel of image B and

N is the total number of voxels being compared.

3.5.2 Mean reciprocal square differences

This metric is similar to the mean squares metric, but but adds intensity dif-

ferences after passing them through a bell-shaped function 1
1+x2 . This is also

suitable only for images obtained from the same modality and with the assump-

tion that the intensity values representing the same point must be identical.

This metric is calculated as

MRSD(A,B) =
N∑

i=1

1

1 + (Ai−Bi)2

λ2

(3.20)

where Ai is the i-th voxel of image A, Bi is the i-th voxel of image B, N

is the total number of voxels being compared and λ defines the capture radius

(in intensity units). The optimal value of the metric is N .

3.5.3 Mutual information

As we mentioned in Chapter 2, the mutual information metric was first in-

troduced as a tool for image registration by Viola and Wells [177, 183]. If we

interpret the intensity values in each image as random variables, the mutual

information metric measures how well one random variable describes the other.

The major difference between this metric and the previous two is that the

images do not need to be acquired from the same modality. The mutual infor-

mation metric makes no assumptions about the relationship between the two

images – it assumes no functional correlation, only a predictable one.

For a detailed discussion of this metric, see [176]. Briefly, we can define

the joint probability density function (PDF) between two images A and B, for

example by normalising their 2D histograms – call this P (i, j).

Radial basis functions for non-rigid registration 42

If we let Pa(i) and Pb(j) denote the corresponding marginal PDFs, we can

use these to calculate the marginal and joint entropies

H(A) = −
∑

i

Pa(i) log Pa(i) (3.21)

H(B) = −
∑

j

Pb(j) log Pb(j) (3.22)

H(A,B) = −
∑
i,j

P (i, j) log P (i, j) (3.23)

then the mutual information between the two images A and B is given by

MI(A,B) = H(A) + H(B)−H(A,B) (3.24)

A number of specialisations have been made to the mutual information

metric since the original version above. Two of these are described in the next

sections.

3.5.4 Mattes mutual information

Mattes et al. [109, 110] use a variation of the mutual information metric, in

which intensity values in each image are grouped into discrete bins evenly spread

over the dynamic range of the images. The marginal and joint PDFs are cal-

culated from these bins and the entropy values computed as in the previous

section.

In the Viola and Wells implementation [177, 183], the PDFs are smoothed

with a Gaussian kernel. Mattes et al. developed their technique for CT-PET

registration, where inherent differences in the imaging modalities produce a

significant degree of non-linear motion between the images. To recover this

motion, the authors use a zero order B-spline kernel to compute the PDF of

the fixed image A, and a third order B-spline kernel to compute the PDF of

the moving image B.

Radial basis functions for non-rigid registration 43

3.5.5 Normalised mutual information

The normalised mutual information metric was proposed in 1999 by Studholme

et al. [165], who give the following equation for its calculation

NMI(A,B) =
H(A) + H(B)

H(A,B)
(3.25)

where the entropies H(A), H(B) and H(A,B) are calculated as described

in Section 3.5.3.

This metric is overlap invariant, which means that the metric does not

depend on the degree of overlap of the two images. It has an optimal value of

2.0 and a minimum value of 1.0.

3.5.6 Correlation coefficient

The correlation coefficient is another metric which is best suited to mono-modal

images. It assumes a linear relationship between the intensity values in the two

images, so it can cope with changes in brightness or contrast.

It is calculated as follows

CC(A,B) =
∑N

i=1(Ai − Ā)(Bi − B̄)

(
∑N

i=1(Ai − Ā)2
∑N

i=1(Bi − B̄)2)
1
2

(3.26)

where Ai is the i-th voxel of image A, Bi is the i-th voxel of image B, N is

the total number of voxels being compared and Ā and B̄ are the mean intensity

values of images A and B respectively.

3.5.7 Cardinality match

This is perhaps the most basic of metrics, suitable only for mono-modal images

with identical intensity values representing the same tissue type.

The cardinality match is simply an indication of how many voxels are an

exact match between the two images. If the values do not match, no account is

Radial basis functions for non-rigid registration 44

made of the amount by which they differ - all matches are good, all mismatches

are bad.

This metric has an ideal value of 1.0 indicating that the images are identical.

At the other end of the scale, a score of 0.0 indicates that the intensity values

of every pair of corresponding voxels are different.

For practical image registration purposes the cardinality match metric is not

suitable. However, by designing synthetic test data appropriately we can still

make some use of this measurement in the evaluation of registration accuracy.

3.6 Design of synthetic test data

Synthetic data is necessary to confidently evaluate the accuracy of a warp.

Unless we have ground truth data, we can only use statistical measures such as

mutual information to assess the result of image registration.

However, designing useful test data is not straightforward. We wish to be

able to easily identify and quantify mis-registration but we also need to measure

the effect that the optimised evaluations have on registration accuracy. Can

we be sure that the test data is sensitive enough – and, conversely, not too

sensitive – to show such differences, which may be small?

The answer of course is no - there is an infinite variety of image content

that we might wish to input to the registration algorithms and we cannot test

all permutations. However, particularly for medical image registration, we do

know something about the content, which we can use to guide us in preparing

test data.

Many organs and structures within the body produce relatively large areas

of homogenous intensity response. For example, a CT scan of the liver or

an MRI image of grey matter from a brain scan – see Figure 3.2. In these

images, any registration error will tend to show mostly (or only) where there is

a boundary with an area of a different intensity, that is, some contrast, or an

Radial basis functions for non-rigid registration 45

(a) CT section showing the liver. (b) MRI coronal brain scan.

Figure 3.2: CT and MRI images showing areas of homogenous intensity.

“edge”.

So, the first issue to consider for the synthetic test data is that we need to

have areas of sharp contrast – large changes in intensity between adjacent voxels,

to provide us with edges. If we construct a difference image by subtracting

the result of a warp evaluation from the ground truth data, any registration

inaccuracies will produce a pattern in this image that echoes the shape of the

edge.

The second issue is to ensure that registration errors are not only made visi-

ble in areas of high contrast but also in areas of similar intensity. If we introduce

a linear intensity gradient into these areas of the test data, so that adjacent vox-

els always have different intensities, we can make sure that a mis-alignment of

just one voxel in a particular direction will also produce a detectable pattern in

the difference image. To clarify, we can anticipate that mis-registration of more

than a certain number of voxels in any direction would be readily identified vi-

sually. However, for smaller misalignments, we can magnify the visual effect in

the difference image by incorporating a smooth gradient in the intensity values

such that a misalignment of say two voxels in any direction produces a stronger

pattern in the difference image than a misalignment of one voxel.

In proposing this, we should be aware that, by using a simple linear gradient

Radial basis functions for non-rigid registration 46

within the test data, we may inadvertently bias the tests in favour of techniques

that estimate voxel intensity by linear interpolation. In fact, some of the op-

timised techniques will do exactly that (see Section 3.10.1). The test data we

design will attempt to mitigate the effect of this bias as we shall see shortly.

Lastly, it would be useful to have a visual impression of the quality of a

warp. This is more easily achieved if the test data is not just random, but

has some familiar geometric structure in which we will be able to identify any

inconsistencies in warping accuracy more naturally.

So, taking all the above points into consideration, we will describe the basic

sets of data that will form the ground truth.

3.6.1 The ground truth

The basic component of the test data is a checkered cube. This is a symmetrical

regular cube, centered within a region of black space, containing a number of

alternating dark and light blocks (themselves cubes). For these tests, the overall

data set is 256 × 256 × 256 voxels and the cube is 200 × 200 × 200 voxels and

patterned with an 8 × 8 × 8 checker effect which gives us 512 cells within the

cube, each of 25× 25× 25 voxels.

(a) Sample 2D section. (b) 3D view.

Figure 3.3: Basic component of synthetic test data.

Radial basis functions for non-rigid registration 47

This gives us a familiar geometrical figure, which we can easily assess visually

to see if there is any corruption of the expected regular pattern. Figure 3.3

shows a 2D section and a 3D representation of this basic data.

The cube also provides two levels of high contrast – the first level is the whole

cube itself in relation to the surrounding black background, and the second level

comprises the intersections of the light and dark cells within the cube. So we

have some image contrast at two levels of resolution, albeit crudely.

This cube is not itself used for any evaluations, but is the starting point

for generating four sets of ground truth data, each of which is described in the

following sections.

3.6.2 Regular linear gradient

The first variation of the basic data involves the creation of a regular linear

gradient across the intensity values in each cell of the cube. The gradient runs

diagonally within the cell in three dimensions, so that each voxel is different

from its immediate neighbours.

(a) Sample 2D section. (b) 3D view.

Figure 3.4: Synthetic data - regular linear gradient.

Figure 3.4 shows a 2D section and a 3D view of this data. The formula used

to determine the actual intensity value within each cell is as follows :

Radial basis functions for non-rigid registration 48

Voxel intensity: v(x, y, z) =


255− 2(x + y + z) for a light cell

100 + 2(x + y + z) for a dark cell
(3.27)

where x, y and z are the positional offsets in voxels from the lower left front

corner of the cell being generated.

3.6.3 Irregular linear gradient

The second variation of the basic data is similar to the first, in that a linear

gradient runs across the intensity values in each cell of the cube. This gradient

also runs “diagonally” within the cell in three dimensions, so that each voxel is

different from its immediate neighbours.

However, the gradient is shorter than in Section 3.6.2 so it repeats itself one

or more times within each cell. Also, the gradient is different between dark and

light cells and neither is a “regular” 45 degree gradient.

(a) Sample 2D section. (b) 3D view.

Figure 3.5: Synthetic data - irregular linear gradient.

Figure 3.5 shows a 2D section and a 3D view of this irregular gradient test

data. The formula used to determine the intensity values within each cell is as

follows :

Radial basis functions for non-rigid registration 49

Voxel intensity: v(x, y, z) =


255− ((3x + y + z) mod 32) for a light cell

100 + ((x + 2y + 3z) mod 40) for a dark cell

(3.28)

where x, y and z are the positional offsets in voxels from the lower left front

corner of the cell being generated.

Because of the repeating gradients, this test data gives us an additional level

of granularity for potential mis-alignment at edges. It also partially overcomes

the tendency for linear interpolators in an optimised evaluation algorithm to

correctly “guess” a voxel value based on its neighbours.

3.6.4 Checkered cube plus noise

The third test data set is simply the basic two-tone cube from Section 3.6.1

with some random noise added. There are no gradient fills.

(a) Sample 2D section. (b) 3D view.

Figure 3.6: Synthetic data - checkered cube plus noise.

Figure 3.6 shows a 2D section and a 3D view of this noisy test data. The

formula used to determine the intensity values within each cell is as follows

Radial basis functions for non-rigid registration 50

Voxel intensity: v(x, y, z) =


255−Rl for a light cell

95 + Rd for a dark cell
(3.29)

where x, y and z are the positional offsets in voxels from the lower left front

corner of the cell being generated, Rl is a random number between zero and

100, and Rd is a random number between zero and 60.

This test data should be sensitive not only to mis-alignment but will also de-

tect inappropriate interpolation. Effectively, the noise adds more fine resolution

“edges” to the data. This test data may be able to give us some information

about the suitability of different similarity metrics for noisy data. We will

discuss this further in Chapter 5 Section 5.1.

3.6.5 Non-linear gradient

The fourth and final variation of the basic data involves the creation of a non-

linear gradient across the intensity values in each cell of the cube. Again, this

gradient runs “diagonally” within the cell in three dimensions, so that each

voxel is different from its immediate neighbours.

(a) Sample 2D section. (b) 3D view.

Figure 3.7: Synthetic data - non-linear gradient.

Radial basis functions for non-rigid registration 51

Figure 3.7 shows a 2D section and a 3D view of this test data set. The

formula used to determine the intensity values within each cell is as follows

Voxel intensity: v(x, y, z) =


220− 1002x2+3y2

5n2 for a light cell

100 + 1004y2+z2

5n2 for a dark cell
(3.30)

where x, y and z are the positional offsets in voxels from the lower left front

corner of the cell being generated and n is the dimension of each cell (in this

case, 25). The coefficients in Equation 3.30 were determined empirically.

This test data is perhaps the most visually realistic when compared to real

medical image data – a mixture of soft and hard edges, areas of similar but

varying intensity and some curved boundaries within the cells.

3.6.6 Deforming the ground truth

The previous sections have provided us with four sets of ground truth data

• Regular linear gradient

• Irregular linear gradient

• Checkered cube with random noise

• Non-linear gradient

We now need to deform this data so that we can exercise the warping al-

gorithms using the deformed data and then compare the results to the ground

truth.

To produce the warped test data sets we first generate a set of landmarks

in the ground truth images. In order to verify the placement of the landmarks

visually and to ensure that they are reasonably distributed within the data, we

programmatically place them at the intersections of the dark/light cells in the

basic cube data.

Radial basis functions for non-rigid registration 52

Remember that – for this study – we are not concerned with the absolute

accuracy of the warp, we purely wish to compare performance of various warping

algorithms and implementations. As long as we can produce a benchmark warp

for the test data, we can achieve the desired result. Specifically, we do not wish

to have poor coverage of landmarks nor inaccurate landmark placement to affect

the results. For this reason, programmatic landmark generation is ideal.

Having obtained one set of landmarks in the ground truth data, a random

TPS transformation is applied to these landmarks to produce a set of corre-

sponding points in a warped data set. We now have a complete set of landmark

pairs, which we use to produce the warped data sets as follows

1. Each landmark pair is swapped so that the source point becomes target

point and vice versa.

2. The resulting set of landmark pairs is used to solve two TPS transfor-

mations as described in Section 3.3.1 – one using φ(r) = r2 log r and one

using φ(r) = r.

3. Each of the above TPS transformations is applied to all voxels in all four

data sets, producing the synthetic test data.

Figure 3.8: Selected landmark pairs in synthetic test data.

Radial basis functions for non-rigid registration 53

Now, we have eight sets of test data – each of the four ground truth images

has been warped using both RBFs. In addition, we have a set of landmark

pairs which we can use to perform a warp back to the ground truth and so

compare the warping evaluation implementations. Table 3.2 shows the spatial

distortions in the test data sets, in millimetres.

RBF Minimum Maximum Range Average Std. Dev.

φ(r) = r 0.000000 35.978528 35.978528 6.001375 6.119655

φ(r) = r2 log r 0.000000 47.304805 47.304805 6.253584 6.679255

Table 3.2: Spatial distortions in millimetres in the synthetic test data.

Figure 3.8 shows a selection of matching landmark points in the regular

linear gradient test data set, which has been warped using a RBF of φ(r) = r

and Figure 3.9 shows the four φ(r) = r data sets as 3D projections. The four

φ(r) = r2 log r data sets are visually similar so are not reproduced here.

Note that all four data sets in Figure 3.9 have undergone exactly the same

transformation2 – only the voxel intensities differ. The landmarks are identi-

cal and so the mapping function between each data set and its corresponding

ground truth is also identical. This is important for testing because it will help

us to make a more useful judgement of the warp accuracy as explained in the

introduction to Section 3.6.

3.7 Choice of image similarity metric

Table 3.3 shows the metrics previously detailed in Section 3.5, together with

the corresponding benchmarks3 for the 256× 256× 256 synthetic test data.
2The 3D rendering method used to generate Figure 3.9 produces some visible ’banding’

artifacts in these images, which are not present in the data – the 2D samples in Sections 3.6.2

to 3.6.5 give an accurate representation of the test data.
3Benchmarks produced using identical ground truth data sets for comparison.

Radial basis functions for non-rigid registration 54

(a) Regular gradient. (b) Irregular gradient.

(c) Checkered cube plus noise. (d) Non-linear gradient.

Figure 3.9: Various 3D views of synthetic data sets for φ(r) = r.

Of these metrics, only those based on mutual information are suitable for

multi-modal images. Although the correlation coefficient can accommodate

changes in brightness and contrast, this is not sufficient for the differences in

image content between say CT and MRI.

According to [165] the NMI metric is stable in more circumstances than the

other two mutual information metrics (MI and MMI) we described. In addition,

as Table 3.3 shows, it has an optimum value which is independent of the content

of the test data.

So, although we should not blindly accept the NMI metric as an absolute

Radial basis functions for non-rigid registration 55

Acronym Description Benchmark

MS Mean Squares 0.000000

MRSD Mean Reciprocal Squared Difference 16777216

MI Mutual Information

Regular linear gradient 3.250990

Irregular linear gradient 2.306447

Checkered cube + noise 3.933237

Non-linear gradient 3.528989

MMI Mattes Mutual Information

Regular linear gradient -1.559989

Irregular linear gradient -1.508737

Checkered cube + noise -1.734901

Non-linear gradient -1.710639

NMI Normalised Mutual Information 2.000000

CC Correlation Coefficient 1.000000

CM Cardinality Match 1.000000

Table 3.3: Similarity metrics - descriptions and benchmarks.

measure of registration accuracy (see Section 5.1 for one reason why), with the

current state of research in this field, it is arguably one of the best metrics we

have available.

As NMI is suited to both mono-modal and multi-modal scenarios, we will use

this metric as the primary image similarity measurement for all experimental

work.

3.8 Experimental methods

A full description of the software developed for performing these experiments

is given in Appendix A. The main features provided by the software are as

follows :

Radial basis functions for non-rigid registration 56

• The ability to load two three-dimensional images and to view them side

by side as 2D slices along any axis.

• Independent scrolling through the two sets of image slices to identify and

mark corresponding features to form a set of landmarks.

• The ability to save and load a set of landmarks to/from disk.

• Selection of RBF, interpolation option and any technique-specific warp

evaluation parameters.

• Use landmarks to solve the TPS function and calculate the TPS weights

and affine transformation coefficients.

• Perform the warp evaluation using a selected technique.

These steps are described in more detail in the following sections. We assume

that we have identified a number of matching features in the two images and

have manually marked these landmark pairs, or that we have a set of landmarks

generated programmatically during the construction of the synthetic test data.

Such a set of landmark pairs is the main input to the procedure that solves the

warping function using the method described in Section 3.3.1.

3.9 Solving the warping function

The landmark positions are converted to floating point 3D coordinates accord-

ing to the voxel dimensions of the input data sets4. The algorithm then proceeds

as follows

1. Memory is allocated for the matrices L (Eq. 3.14), Y (Eq. 3.11) and V

(Eq. 3.16), all containing double precision floating point elements.
4Note that the voxels need not be the same size in all three dimensions, as is common in

medical image data.

Radial basis functions for non-rigid registration 57

2. Target landmark coordinates input by the user are loaded into matrix Y .

3. The top right – matrix A (Eq. 3.13) – and bottom left – AT – of matrix L

are populated using the source landmark coordinates input by the user.

4. The upper left block of L – the matrix C – is computed using Equation 3.9

on page 35.

5. We then solve V = L−1Y by first performing LU decomposition[129, p. 43]

on L, followed by forward/backward substitution[129, p. 47] using Y .

6. The spline coefficients – matrix R (Eq. 3.12) – and the affine transfor-

mation – matrix T (Eq. 3.17) – are extracted from matrix V as the final

result.

Note that, although the basis functions we are using in these experiments

are both thin-plate splines (i.e. they minimise the bending energy functions in

Equations 3.4 and 3.6), the technique we are using could in practice be applied

to any suitable RBF with little modification.

To summarise, as a result of solving the warping function in Equation 3.5,

the inputs we need to evaluate the warp on a 3D image are as follows :

• The set of n landmark coordinates (x1, y1, z1) · · · (xn, yn, zn) in the source

image5.

• The set of n 3D weights – one for each landmark – representing the spline

coefficients, (λx1, λy1, λz1) · · · (λxn, λyn, λzn)

• The 4× 4 affine transformation matrix, T .

Before detailing the methods we will use to evaluate the warping function

using the above information, there is one more consideration discussed in the

next section.
5The corresponding points in the target image are not required.

Radial basis functions for non-rigid registration 58

(a) Forward mapping. (b) Backward mapping.

Figure 3.10: Cross section of synthetic cube data set showing tearing artifacts

caused by forward mapping.

3.9.1 Forward mapping versus backward mapping

By mapping voxels from the source data to the target data (forward mapping)

we may not always fully populate the target voxel set. This is because, due to

numerical precision and rounding, there is a high probability that more than

one source voxel will be mapped to the same target voxel, leaving “holes” or

“tearing” in the target data set because the 1:1 mapping will have been lost.

Figure 3.10a shows an example of this effect.

To overcome this problem, we need to calculate the inverse of the mapping

from source to target so that we can consider every voxel in the target data

set and map this back to a voxel in the source data set (backward mapping).

The simplest way to do this is to reverse the roles of the source and target

landmarks before we solve Equation 3.5. Then the TPS coefficients and affine

transformation will represent the mapping from target space to source space

and we can use backward mapping to populate the target data. Figure 3.10b

shows the same slice of the synthetic data set as in Figure 3.10a, but this time

warped using backward mapping.

Radial basis functions for non-rigid registration 59

3.9.2 Interpolation during backward mapping

When using backward mapping, it is possible that we may not map exactly to

the coordinates of an existing voxel in the source data set. In this case we have to

use an interpolator, a variety of which have been proposed for this purpose [54].

The three most popular methods are: nearest neighbour interpolation (NNI),

tri-linear interpolation (TRI) and partial volume interpolation (PVI).

Collignon et al. [29, 103] introduced PVI as an interpolator specifically de-

signed to be used with MI techniques. PVI is not an interpolator in the sense

that it can be used to create an interpolated image [127] but is used to update

the joint histogram of two images in a way which does not introduce new grey

values into the data and facilitates the calculation of an MI based metric.

As the applications we are interested in require the creation of a warped

image and we are not using iterative MI-based registration techniques, the

experimental software will simply provide a choice between NNI and TRI during

backward mapping so that we can explore any differences in performance and

accuracy between these two techniques, which might arise as a result of the

warp evaluation optimisations.

3.10 Evaluating the warping function

Once we have identified matching anatomical landmarks in the source and tar-

get data sets and calculated the set of 3D weights and the affine transformation

associated with these landmarks (Section 3.9), we are ready to evaluate the

warping function in Equation 3.18 for each voxel in a data set to map between

the source and target image spaces.

As described above in Section 3.9.1, to avoid the creation of “tearing” arti-

facts in the resulting warped data, we will only use backward mapping – i.e. for

each voxel in the target space we will map back to the source image to retrieve

Radial basis functions for non-rigid registration 60

the required voxel value.

Algorithm 1 shows the pseudocode for a routine which implements Equa-

tion 3.18 to transform an arbitrary point (x, y, z) to its corresponding warped

position (x′, y′, z′).

Algorithm 1 warp(x, y, z) : Evaluate warping function for a given point.
1: (x′, y′, z′)← (0, 0, 0) {initialise result}

2: for i = 1 to n do {for each landmark}

3: (xd, yd, zd)← (x, y, z)− (xi, yi, zi)

4: r ←
√

xd
2 + yd

2 + zd
2 {distance to current landmark}

5: u← φ(r) {evaluate basis function}

6: x′ ← x′ + uλxi {apply 3D weights}

7: y′ ← y′ + uλyi

8: z′ ← z′ + uλzi

9: end for

10: (x′, y′, z′)← (x′, y′, z′)+ T(x, y, z)

11: return (x′, y′, z′)

After initialising the warped position in step 1, the weighted sum of RBFs

is applied in steps 2 through 9 as follows.

The Euclidean distance, r, between the original point and each landmark in

turn is calculated and then used to determine the value, u, of the RBF for that

landmark (step 5). The 3D weights (spline coefficients) previously calculated for

that landmark are then scaled by u and accumulated into the warped position,

(x′, y′, z′).

After the weights for all landmarks have been accumulated, the resulting

warped position is augmented by an affine transformation of the original point,

(x, y, z), using the transformation matrix T (Equation 3.17). The warped co-

ordinates are returned as the result of the function.

Radial basis functions for non-rigid registration 61

3.10.1 Warping function evaluation techniques

In Section 3.4 we identified two RBFs for comparative testing. Section 3.9.1

identified two further options - the choice of nearest neighbour or tri-linear in-

terpolation during backward mapping. Finally, we consider five different tech-

niques to implement the warping function evaluation – three of which have been

previously studied for non-rigid medical image registration and two of which

have not.

Brute force evaluation in software This is a common and straightforward

software implementation of Equation 3.18, performed for every voxel in

the data set. This implementation is written in C++ and runs on the

CPU using system RAM. It will form the basis for the gold standard as

we shall see in Chapter 4.

Brute force evaluation - hardware accelerated This is another implemen-

tation of the brute force evaluation, but this time written as a pixel shader

running primarily on the GPU and using texture memory for all inputs

and outputs. Landmark positions and 3D weights are encoded in 32-bit

floating point textures and the affine transformation matrix supplied in

shader registers. The result of the warp is read back from texture memory.

Grid based evaluation - hardware assisted This implementation follows

the method described by Levin et al. [95, 96] that evaluates the warp at

regularly spaced grid points on a mesh which is superimposed on each 2D

image slice. The resolution of the grid is configurable and it is intended

that each grid cell will enclose multiple voxels. Effectively, the mesh is

warped and drags the image data (in the form of a texture) along with

it. This technique uses the fast tri-linear interpolation capability of the

GPU to approximate individual voxel values within each grid cell.

Radial basis functions for non-rigid registration 62

Software accelerated “Fast RBF” evaluation This C++ software imple-

mentation uses the method proposed by Livne and Wright [101] for fast

evaluation of smooth6 RBFs and is described in detail in Section 3.14. It

has not yet been studied in a medical image registration context, nor has

it been applied to any practical problem [190].

Hardware accelerated “Fast RBF” evaluation The final technique com-

bines the hardware and software accelerations by using pixel shaders,

floating point textures and the GPU to re-implement the software accel-

erated RBF evaluation technique above. Again, this has not previously

been applied to non-rigid medical image registration.

The following sections describe each of the above implementations in more

detail.

3.11 Brute force evaluation in software

3.11.1 Overview

The brute force method, implemented in software, is the benchmark. This algo-

rithm is a direct implementation of Equation 3.18 on page 37, which operates

on every voxel in the target image space, mapping back to a value from the

source space. All calculations are performed using double precision7 floating

point variables.

3.11.2 Algorithm implementation

Algorithm 2 shows the pseudocode for this implementation. Each target voxel

is first converted to a floating point 3D position by multiplying the xyz voxel
6A subsequent paper by the same authors [100] details improvements for piecewise smooth

RBF’s, such as the thin-plate spline although these refinements are not considered significant

for the intended application areas described in this thesis. Chapter 6 discusses this further.
764 bit floating point value, range 1.7E ± 308 (15 digits).

Radial basis functions for non-rigid registration 63

indices by their corresponding voxel dimension (step 2). This step is necessary

because voxels from different data sets – particularly multi-modal – may not

be the same size.

Algorithm 2 Brute force evaluation in software.
1: for each target voxel Vt(x, y, z) do

2: (xt, yt, zt)← Vt × (voxelsize) {calculate target voxel position}

3: (xs, ys, zs)←warp(xt, yt, zt)

4: Vt(x, y, z)← Vs(xs, ys, zs) {set new voxel value}

5: end for

In step 3, the target voxel position is warped to the corresponding position

(xs, ys, zs) in the source image using the “warp” function from Algorithm 1 in

Section 3.10 on page 60. Finally, in step 4, the source image is sampled at the

warped position and the resulting intensity value stored in the original target

voxel Vt(x, y, z).

This algorithm is the simplest, containing as it does no hardware or software

optimisations8. As a direct implementation of the warping function on a voxel

by voxel basis, the output of this algorithm, and the time it takes to execute,

will be the standard against which the optimised evaluations are measured.

Chapter 4 presents the results of these comparisons.

3.12 Brute force evaluation - hardware accelerated

3.12.1 Overview

This evaluation technique is purely a hardware optimised version of the brute

force method in the previous section. By “hardware”, we mean that we use the

programmable abilities of the graphics card and take advantage of the parallel

processing capabilities of the card and GPU in order to execute the brute force
8Other than those applied by the optimising C++ compiler.

Radial basis functions for non-rigid registration 64

algorithm much faster than we could using conventional memory and the CPU.

One other difference is the numerical precision available during all com-

putations. The graphics processor and texture memory currently only natively

support 32-bit floating point precision, so we expect the results of this technique

to show some differences from the 64-bit precision software implementation in

the previous section.

3.12.2 Algorithm implementation

The algorithm that implements Equation 3.18 is coded in assembly language

as a DirectX pixel shader, which is executed by the GPU for every pixel9 we

render.

The primary inputs to the algorithm – the image to be warped, the TPS

weights and the landmark positions – are supplied to the pixel shader by encod-

ing them into 32-bit floating point textures in the graphics card memory. The

remaining parameters – affine transformation matrix, voxel sizes, data dimen-

sions – are supplied to constant registers in the pixel shader before rendering.

To effect the warp, the source image is first loaded to graphics card memory

as a 3D texture. Then the target image is rendered as a textured quad, slice by

slice, with a 1:1 mapping of voxels to screen pixels.

As each slice is rendered, the pixel shader is invoked for every pixel (voxel)

in that slice. This shader uses the TPS weights and landmarks from the 32-

bit floating point textures to compute the warped position of the target voxel

using Equation 3.18. Finally, the shader samples the source data texture at

that position and returns the intensity value obtained to the frame buffer at

the target voxel (pixel).

After each slice has been rendered, the contents of the frame buffer are read

back into system memory and used to populate the corresponding voxels in the
9Strictly we should say ‘fragment’ but here we use a 1:1 mapping to pixels.

Radial basis functions for non-rigid registration 65

Figure 3.11: Brute force evaluation - hardware accelerated.

target data set. Once all slices have been rendered, the warp is complete.

Figure 3.11 on page 65 shows a schematic diagram of this process. The area

between the dotted lines represents the processes taking place on the graphics

hardware. The source code of the shaders is listed in Appendix C.

Radial basis functions for non-rigid registration 66

3.13 Grid based evaluation - hardware assisted

3.13.1 Overview

This implementation is based on the method described by Levin et al. [95, 96].

There are two elements to the optimisation in this approach, one algorithmic

and one based on hardware accelerated graphics.

The algorithmic optimisation is achieved by reducing the number of points

that need to be evaluated through the warping function. Whereas the brute

force methods evaluate the function at every target voxel position, this method

only evaluates the warp at regularly spaced grid points on a mesh which is

superimposed on each 2D image slice in the 3D data. The granularity of the

grid is configurable. Figure 3.12 shows the grid mesh – Figure 3.12a before

warping, and Figure 3.12b after applying an arbitrary warping function. Note

that the grid is built using explicit triangulation, by adding a central vertex in

each square grid cell. This is the same technique employed by Levin et al. [95, 96]

and avoids incorrect interpolation due to the graphics driver internally rendering

a quad as two triangles.

(a) Unwarped grid vertices. (b) Warped grid vertices.

Figure 3.12: Regular grid, triangulated for better interpolation, demonstrating

warping of vertices.

Radial basis functions for non-rigid registration 67

The second element of optimisation in this technique is the use of hardware

accelerated tri-linear interpolation by the graphics card. The data to be warped

is loaded into a 3D texture in memory on the graphics card and 3D texture

coordinates are used to “tie” the texture to the vertices of the grid mesh. As

each vertex is processed through the warping function, it is attached to a new

position in the texture based on the position to which its original coordinate

would warp. In this way, the grid stays still but the texture warps across it.

The voxels covered by the grid cells are interpolated from the source data in

the 3D texture and the resulting values used to populate the target image.

Algorithm 3 Grid based evaluation - hardware assisted.
1: for each 2D data slice do

2: calculate slice z position

3: set grid vertices (x, y, z)

4: for each grid vertex do

5: (x′, y′, z′)←warp(x, y, z) {find position in source}

6: (s′, t′, u′)← texture coordinates for (x′, y′, z′)

7: store grid vertex data (x, y, z, s′, t′, u′)

8: end for

9: render slice using (x, y, z, s′, t′, u′) textured grid

10: read rendered data from graphics memory

11: replace 2D slice voxel values with rendered data

12: end for

3.13.2 Algorithm implementation

Algorithm 3 shows the pseudocode for this implementation. The target 3D

data set is processed slice by slice rather than voxel by voxel and uses back-

ward mapping. For each xy slice in the target image, the actual z position is

calculated using the slice number and the voxel size (step 2), then the (x, y, z)

Radial basis functions for non-rigid registration 68

vertex positions of the grid mesh are populated.

The grid vertices are then warped to their corresponding positions (x′, y′, z′)

in the source image using Algorithm 1 in Section 3.10 on page 60. The 3D

texture coordinates (s′, t′, u′) representing that position in the source image are

stored with the unwarped vertex position (steps 5 to 7). Note that although

the grid vertices will not change position, the texture coordinates will change.

Figure 3.13 shows this diagrammatically – compare with Figure 3.12 which

shows the vertices themselves being warped, but in the opposite direction.

(a) Unwarped grid texture coordinates. (b) Warped grid texture coordinates.

Figure 3.13: Regular grid, triangulated for better interpolation, demonstrating

warping of texture coordinates (shown in red).

In step 9, the textured grid is rendered to an offscreen buffer – actually a

block of texture memory on the graphics card – and then, in steps 10 to 11, the

warped texture is used to populate the target voxels covered by the 2D slice.

The process is repeated until all slices have been rendered.

3.14 Software accelerated “Fast RBF” evaluation

In 2006, Livne and Wright [100, 101] described a new method for fast multilevel

evaluation of RBF expansions. The method is compared to the Fast Multipole

Radial basis functions for non-rigid registration 69

Method (FMM) of Beatson and Newsam [10] and the Fast Gauss Transform

(FGT) of Roussos and Baxter [140] and claims advantages in simplicity of im-

plementation along with ease of parallelisation.

The algorithmic cost of Livne and Wright’s technique for smooth RBFs is

given as O((m + n)(ln(1/δ))d) where n is the number of centres (landmarks

in this case), m is the number of evaluation points (voxels in this case), δ is

the desired evaluation accuracy and d is the dimensionality of the data. In

comparison, the cost of the brute force evaluation is O(mn), the FMM cost is

O((m + n)(lnn)(ln(1/δ))d+1), and the FGT cost is O(q(cd
1n + cd

2m)) where q is

the number of Gaussians, c1, c2 ∈ N, c1 > c2, and the constants increase with

dimension and desired accuracy.

The basic idea of this method is that a smooth RBF, φ can be represented

accurately on a regular coarse grid, of fewer nodes than the full voxel set and

that the expensive summation in Equation 3.18 need be performed only at these

nodes while the remaining voxel values can eventually be determined using a

less expensive formulation based on the values calculated for the surrounding

nodes.

Unlike the grid based approach in Section 3.13, it is the TPS coefficients

that are interpolated within the grid, not the intensity values of the voxels.

3.14.1 “Fast RBF” evaluation in three dimensions

Before we describe the implementation of this method, we must first extend the

formulation to three dimensions.

Following the notation used by Livne and Wright [101], we will regard the

image data to be at “level h”, where h is a basic measure of voxel/point distri-

bution. In the following equations, all quantities defined at level h are denoted

by lowercase symbols and all boldface symbols are in R3.

Without loss of generality, we assume that the centres (landmark points)

Radial basis functions for non-rigid registration 70

{yj}nj=0 and the evaluation points (target voxels) {xi}mi=0 lie in [0, 1]3 and that

yj = (y(1)
j , y

(2)
j , y

(3)
j) and xi = (x(1)

i , x
(2)
i , x

(3)
i).

As in [101], the task is to compute :

s(xi) =
n∑

j=0

λ(yj)φ(‖xi − yj‖), i = 0, 1, . . . ,m. (3.31)

Level H

We define the “level H”, H = (H,H, H) which is a coarser level than level h

and consists of two uniform grids, each with spacing H :

{
Y

(k)
Jk

}Nk

Jk=0
,

{
X

(k)
Ik

}Mk

Ik=0
, k = 1, 2, 3

The first of these grids is used to hold coarse level expansion coefficients at

level H, which we will approximate based on the TPS coefficients λ(yj) at each

landmark. The second grid represents the level H evaluation points, which hold

the coarse summations from which we will finally calculate the warped position

of each voxel at level h. We will see how these grids are populated shortly.

To provide a convenient way to reference the level H grids, we will use the

following notation, where × denotes the Cartesian product :

{YJ}NJ=0 =
{

Y
(1)
J1

}N1

J1=0
×
{

Y
(2)
J2

}N2

J2=0
×
{

Y
(3)
J3

}N3

J3=0
, J = (J1, J2, J3),

N = (N1, N2, N3)

{XI}MI=0 =
{

X
(1)
I1

}M1

I1=0
×
{

X
(2)
I2

}M2

I2=0
×
{

X
(3)
I3

}M3

I3=0
, I = (I1, I2, I3),

M = (M1,M2,M3)

So, for example, Y(J1,J2,J3) represents the level H expansion coefficient

(Y (1)
J1

, Y
(2)
J2

, Y
(3)
J3

) and X(I1,I2,I3) represents the level H coarse summation point

(X(1)
I1

, X
(2)
I2

, X
(3)
I3

).

The grids {YJ}NJ=0 and {XI}MI=0 are created in such a way that they just

overlap {yj}nj=0 and {xi}mi=0 respectively. This is so that we can use centered

p-th order tensor product interpolation between the grids at level H and the

Radial basis functions for non-rigid registration 71

corresponding yj and xi at level h, for some even10 p ∈ N. Specifically, for

k = 1, 2, 3, we choose [101] :

Y
(k)
J = y

(k)
min −

(p−1)H
2 + J (k)H, J (k) = 0, 1, . . . , Nk,

X
(k)
I = x

(k)
min −

(p−1)H
2 + I(k)H, I(k) = 0, 1, . . . ,Mk

where

Nk =
⌊

y
(k)
max−y

(k)
min

H − 0.5
⌋

+ p, y
(k)
min = min

0≤j≤n
y

(k)
j , y(k)

max = max
0≤j≤n

y
(k)
j

Mk =
⌊

x
(k)
max−x

(k)
min

H − 0.5
⌋

+ p, x
(k)
min = min

0≤i≤m
x

(k)
i , x(k)

max = max
0≤i≤m

x
(k)
i

Having defined the grids at level H, we can proceed to implement a less

expensive summation than that shown in Equation 3.31. The first step to this

is to calculate the level H expansion coefficients.

Calculating the “level H” expansion coefficients

As described in [101], because φ(‖xi−y‖) is a smooth function of y(1), y(2), y(3)

for every fixed xj , we can approximate its value at y = yj from its values at

neighbouring YJ ’s by using a centered p-th order tensor product interpolation

in y(1), y(2) and y(3) :

φ(‖xi − yj‖) =
∑

j:Jkεσ
(k)
j

ωjJ3ωjJ2ωjJ1φ(‖xi −Y(J1,J2,J3)‖) (3.32)

where j = 0, 1, . . . , n and for k = 1, 2, 3 : σ
(k)
j :=

{
Jk : |Y (k)

Jk
− y

(k)
j | < pH/2

}
, ωjJk

are the centered pth-order interpolation weights from the coarse centres Y
(k)
Jk

to

the landmark positions y
(k)
j . Using the method described in [101, Appendix A],

the interpolation weights {ωj}p−1
j=0 are calculated using the following algorithm :

ω̃j ←− cj/(x− xj), j = 0, . . . , p− 1

ω̃ ←−
p−1∑
j=0

ω̃j

ωj ←− ω̃j/ω̃, j = 0, . . . , p− 1
10p must be even for a centered interpolation.

Radial basis functions for non-rigid registration 72

where

cj =

∏
i6=j

(xj − xi)

−1

, j = 0, 1, . . . , p− 1

Now we can perform an anterpolation of the TPS coefficients {λ(yj)}nj=0 to

level H by substituting Equation 3.32 into Equation 3.31 :

s(xi) =
N3∑

J3=0

N2∑
J2=0

N1∑
J1=0

Λ
(
Y(J1,J2,J3)

)
φ
(
‖xi −Y(J1,J2,J3)‖

)
(3.33)

where i = 0, 1, . . . ,m and [190] :

Λ(Y(J1,J2,J3)) =
∑

j:Jkεσ
(k)
j

ωjJ3ωjJ2ωjJ1λ(yj) k = 1, 2, 3. (3.34)

in which, λ(yj) is the vector of TPS coefficients (3D weights) at landmark

position yj and J1 = 0, 1, . . . , N1, J2 = 0, 1, . . . , N2 and J3 = 0, 1, . . . , N3.

Livne and Wright [101] implement Equation 3.34 by first initialising all of

the Λ’s to zero, and then by looping through all of the landmarks, distribute

each TPS coefficient λ(yj) amongst the p2 neighbouring YJ’s. Performing the

anterpolation in this way requires O(pdn) operations. Our implementation –

described in detail in Section 3.14.2 – will employ the same technique.

Performing the “level H” summation

In the same way that we calculated the coarse level expansion coefficients,

we can take advantage of the smoothness of φ(‖x − YJ‖) as a function of

x(1), x(2), x(3) for every fixed YJ to obtain the following :

φ(‖xi −YJ‖) =
∑

Ikεσ̄
(k)
i

ω̄iI3ω̄iI2ω̄iI1φ(‖X(I1,I2,I3) −YJ‖) (3.35)

where i = 0, 1, . . . ,m and for k = 1, 2, 3 : σ̄
(k)
i :=

{
Ik : |X(k)

Ik
− x

(k)
i | < pH/2

}
, ω̄iIk

are the centered pth-order interpolation weights from the coarse evaluation

point X
(k)
Ik

to the level h evaluation point x
(k)
i .

Radial basis functions for non-rigid registration 73

Now, substituting Equation 3.35 into Equation 3.33 gives us [190] :

s(xi) =
∑

Ikεσ̄
(k)
i

ω̄iI3ω̄iI2ω̄iI1S(X(I1,I2,I3)) k = 1, 2, 3. (3.36)

where

S(X(I1,I2,I3)) =
N3∑

J3=0

N2∑
J2=0

N1∑
J1=0

Λ(Y(J1,J2,J3))φ(‖X(I1,I2,I3) −Y(J1,J2,J3)‖)

I1 = 0, 1, . . . ,M1, I2 = 0, 1, . . . ,M2, I3 = 0, 1, . . . ,M3

(3.37)

So Equation 3.37 allows us to populate the grid
{

X
(k)
Ik

}Mk

Ik=0
from which

we can finally interpolate to level h to perform the full RBF evaluation using

Equation 3.36.

3.14.2 “Fast RBF” implementation

Implementation specifics

As we mentioned in Section 3.10.1, the method described by Livne and Wright [101]

is developed for smooth kernels.

The TPS with RBF φ(r) = r is only C0 continuous at r = 0, whilst φ(r) =

r2 log r is C1 continuous at r = 0, hence both functions are only piecewise

smooth kernels. Therefore, the best approximation of a TPS using centered

interpolation is linear, i.e. p = 2. Increasing p in the “Fast RBF” algorithm

would create a worse approximation due to the Gibbs phenomenon [190].

For a more accurate approximation to a TPS, it would be necessary to

employ the “kernel softening” technique described in [100], and to use a combi-

nation of larger p and H to balance the computational cost. This is a potential

area for future research.

So for the above reasons, the implementation of the “Fast RBF” technique

will use p = 2, which simplifies some of the equations in Section 3.14.1. We will

describe these in the following few pages.

Radial basis functions for non-rigid registration 74

Implementation overview

In this implementation of the “Fast RBF” warp evaluation, the method proceeds

as follows :

Figure 3.14: Example of X (blue) and Y (red) grids for “Fast RBF” in 2D –

yellow points indicate landmarks.

1. The source and target images are normalised so that all voxel positions

lie in [0, 1]3.

2. Using normalised landmark positions, the TPS coefficients are calculated

as described in Section 3.9.

3. Two uniform grids are defined with spacing H – the first grid, Y, covers

the convex hull of the landmark positions11 and extends just beyond such

that each landmark lies within a grid cell. The second grid, X, similarly

covers the range of target voxel positions, again ensuring a slight overlap.
11If backward mapping, we use the target points. If forward mapping, the source points.

Radial basis functions for non-rigid registration 75

See Figure 3.14.

4. For each landmark, the TPS coefficients are distributed to the surrounding

nodes of grid Y by a process of anterpolation – see Section 3.14.3.

5. The nodes of grid X are populated using the coefficients from grid Y in

the coarse level summation step – see Section 3.14.4.

6. All evaluation points (i.e. all voxels) are warped by using centered, second

order, tensor product interpolation from the nodes of grid X – see Section

3.14.5.

The spacing H of grids X and Y is configurable and controls the accuracy

and execution time of the warping function evaluation. A smaller value for H

results in a more accurate result but lengthier run time. Experimental tests

will use a range of values for H to examine these effects in more detail. This is

discussed further in Chapters 4 and 5.

3.14.3 Anterpolation

Anterpolation (transpose of interpolation) is the mechanism used to distribute

the known TPS coefficients at each landmark position to the surrounding nodes

of grid Y.

As described earlier in this section, this relies on the spatial smoothness of

the RBF, φ(r), so that the value of the coefficients at any point y = yj within

a grid cell can be approximated by a centered second-order tensor product

interpolation from the values at the surrounding nodes of YJ .

By reversing the view of the above “smoothness” assumption, we take the

known coefficients at each landmark and, using Equation 3.34, anterpolate by

distributing them among the eight surrounding grid nodes according to the

barycentric position of that landmark within the cell.

Radial basis functions for non-rigid registration 76

Figure 3.15: A single (yellow) landmark within grid Y, showing the elements

of interpolation weights for nodes A (green) and B (blue).

Figure 3.15 shows a single landmark12 – shown in yellow – within a cell of

grid Y. The green arrows indicate the elements used to calculate the interpo-

lation weights that apply to node A and the blue arrows show those for node

B. As, by definition, the Y grid cell is a cube of dimension H and we are using

p = 2, we just need to divide the (x, y, z) offset of the landmark position from

the lower left front node by H to get the barycentric coordinates necessary to

calculate the interpolation weights for each node.

So, by considering the cell in Figure 3.15 as a unit cube, the interpolation

weight for node A is the product of the magnitude of the green vectors, and

the interpolation weight for node B is the product of the magnitude of the blue

vectors. The weights for the remaining nodes are determined similarly.

The anterpolation stage consists of the steps shown in Algorithm 4. First
12Depending on the size H of grid Y, there may be more than one landmark in a cell.

Radial basis functions for non-rigid registration 77

the coarse expansion coefficients (the nodes of grid Y) are initialised to zero.

Then the TPS coefficients associated with each landmark are distributed to

the surrounding nodes using the interpolation weights calculated as described

above.

Algorithm 4 “Fast RBF” evaluation - anterpolation for p = 2.
1: Λ(Y)← 0 {initialise coarse expansion coefficients}

2: for each landmark (x, y, z) with coefficients λ(y) do

3: determine enclosing Y grid cell, YJ

4: determine offset from cell origin (δx, δy, δz)

5: (ω1, ω2, ω3)← (δx,δy,δz)
H {calculate barycentric positions}

6: (ω4, ω5, ω6)← (1, 1, 1)− (ω1, ω2, ω3)

7: for each node YJn in YJ, n = 1, . . . , 8 do

8: determine which 3 of ω1 . . . ω6 apply to this node

9: ω ← ωaωbωc {combine weights}

10: Λ(YJn)← Λ(YJn) + ωλ(y)

11: mark node YJn as ‘valid’

12: end for

13: end for

Once all landmarks have been processed, grid Y is complete and can be

used to populated grid X in the coarse level summation stage.

3.14.4 Coarse level summation

Now that the TPS coefficients of the landmarks have been distributed to the

nodes of the uniform grid Y, we can use these to perform a coarse level sum-

mation to the nodes of the uniform grid X, which encloses all of the evaluation

points.

To do this, we use Equation 3.37, which shows the worst-case cost of the

coarse level summation step. As detailed in [101], if the landmarks are well

Radial basis functions for non-rigid registration 78

distributed in the data, we could use the same grid for both X and Y and

simplify this summation step considerably. In any case, we only need to con-

sider the nodes of Y in which we have accumulated the coarse level expansion

coefficients – that is, those nodes marked as ‘valid’ in step 11 of Algorithm 4.

Algorithm 5 shows the implementation of the coarse level summation stage.

Each of the coarse level evaluation points in grid X is evaluated using the coarse

level coefficients from grid Y rather than using the original landmarks.

Algorithm 5 “Fast RBF” evaluation - coarse level summation stage.
1: S(X)← 0

2: for each node XI in X do

3: for each valid YJ with coefficients Λ(YJ) do

4: determine distance r between YJ and XI

5: u← φ(r) {evaluate basis function}

6: S(XI)← uΛ(YJ)

7: end for

8: end for

Once this stage is complete, the final step is to process all of the evaluation

points (voxels) by interpolating from the nodes in grid X.

3.14.5 Interpolation - completing the warp evaluation

The last step in this method is to evaluate the warp for each of the voxels in the

target data set so that we can sample the intensity value from the corresponding

point in the source data and so complete the warp.

To do this, we use Equation 3.36 to take the coarse evaluation values at

each node of each cell of grid X and use the same method of interpolation.

Algorithm 6 shows the pseudocode for this process. Each target voxel is

matched to its enclosing cell from grid X. We then perform a centered second-

order tensor product interpolation from the coarse evaluation points in the

Radial basis functions for non-rigid registration 79

Algorithm 6 “Fast RBF” evaluation - interpolation stage.
1: for each target voxel Vt(x, y, z) do

2: (xt, yt, zt)← Vt × (voxelsize) {calculate target voxel position}

3: determine enclosing X grid cell, XI

4: (xs, ys, zs)← 0

5: for each node XIn in XI do

6: calculate interpolation weight, ω

7: (xs, ys, zs)← (xs, ys, zs) + ωS(XIn)

8: end for

9: (xs, ys, zs)← (xs, ys, zs)+ T(xt, yt, zt)

10: Vt(x, y, z)← Vs(xs, ys, zs) {set new voxel value}

11: end for

surrounding eight nodes of X.

Finally, we apply the affine part of the TPS transformation and sample the

source data to retrieve the intensity value of the target voxel position. Once all

voxels have been processed, the warp is complete.

3.15 Hardware accelerated “Fast RBF” evaluation

3.15.1 Overview

The final evaluation technique is a GPU-based implementation of the “Fast

RBF” technique described in the previous section.

Like the GPU-based brute force technique in Section 3.12, this implemen-

tation utilises DirectX pixel shaders and graphics card texture memory as the

method of “hardware” acceleration.

Radial basis functions for non-rigid registration 80

3.15.2 Algorithm implementation

Figure 3.16 on page 81 shows a schematic diagram of this process. The area

between the dotted lines represents the processes taking place on the graphics

hardware. The full source code of the shaders is listed in Appendix C.

The implementation begins in the same way as the software implementation

discussed in Section 3.14.2. So, the following steps are identical and are all

performed using system memory and the CPU :

1. The source and target images are normalised so that all voxel positions

lie in [0, 1]3.

2. Using normalised landmark positions, the TPS coefficients are calculated

as described in Section 3.9.

3. The two uniform grids, X and Y, are defined with spacing H.

4. For each landmark, the TPS coefficients are anterpolated to the surround-

ing nodes of grid Y.

At this point we switch to the hardware accelerated phase of the method.

The positions of the valid13 nodes of grid Y are loaded to a 32-bit floating

point texture on the graphics card. Similarly, the coarse expansion coefficients

associated with each such node are loaded to a second floating point texture.

The first of two rendering passes is now made. The nodes of grid X are

mapped 1:1 with pixels and the whole grid is rendered plane-by-plane. A pixel

shader – marked as ‘Pixel Shader 1’ in Figure 3.16 – performs the coarse level

summation step and writes the resulting values to an offscreen texture buffer

on the graphics card14. This represents the coarse level evaluation points of

grid X.
13Refer to Algorithm 4 on page 77.
14Due to technical limitations of the graphics card, this is implemented as a 3D flat tex-

ture[59].

Radial basis functions for non-rigid registration 81

Figure 3.16: “Fast RBF” evaluation - hardware accelerated.

The second rendering pass is similar to the brute force method described

earlier in Section 3.12 – the target data set is rendered slice by slice and the pixel

shader – marked as ‘Pixel Shader 2’ in Figure 3.16 – performs the second-order

Radial basis functions for non-rigid registration 82

tensor product interpolation using grid X, applies the affine transformation

from the TPS stage, and finally samples the source texture to obtain the correct

intensity value for the target voxel.

As each target slice is rendered to an offscreen buffer, it is read back into

system memory and used to populate the target data set. Once all slices have

been rendered, the warp evaluation is complete.

3.16 Test plan

The primary aim of this study is to determine whether or not we can signifi-

cantly improve the run time of a warping function evaluation without compro-

mising the accuracy to an extent which renders the evaluation useless for any

particular application.

How one defines acceptable accuracy is inevitably application dependent

and/or subjective. However, we can at least attempt to quantify the effects of

performance increase on accuracy to allow such judgements to be made.

The first part of the test plan is to establish a gold standard - that is, the

absolute best we can expect to achieve in terms of warping accuracy. This will

also give us a benchmark timing, which is what we will target for improvement.

For the reasons given in Sections 3.10.1 and 3.11, the brute force software

implementation is the logical choice for optimal accuracy. However, we must

also determine the best choices for the other experimental variables we noted –

the option of tri-linear interpolation versus nearest-neighbour sampling, and

the choice of RBF. Therefore, the first set of tests will be as follows

Test 1 Using the brute force software implementation, warp all eight synthetic

data sets – four using φ(r) = r2 log r and four using φ(r) = r – once using

tri-linear interpolation during backward mapping and again using nearest

neighbour sampling.

Radial basis functions for non-rigid registration 83

This will allow us to do the following :

• Compare accuracy and performance for interpolation option.

• Compare accuracy and performance for RBF option.

• Compare similarity metrics for different test data.

Having performed this test, we wish to be able to choose the most suitable

combination of interpolation option, test data set and similarity metric for mak-

ing comparisons of performance15 between the different evaluation techniques.

Assuming we can do so, we will then run through the remaining evaluation

techniques as follows

Test 2 Using the brute force hardware implementation, warp all eight synthetic

data sets – four using φ(r) = r2 log r and four using φ(r) = r.

In a way, this provides us with a second benchmark. The main difference

between this implementation and its software equivalent is the floating point

precision. The results of this set of tests will allow us to assess a reasonable

standard for the best – in terms of warping accuracy – that we can achieve in

a hardware implementation16.

Test 3 Using the grid-based implementation, warp all eight synthetic data

sets – four using φ(r) = r2 log r and four using φ(r) = r. Repeat the tests

using a range of different grid sizes.

This set of tests will allow us to compare the overall performance17 of the

grid-based method with the results reported by the original authors [95, 96],

and will also show the effect that the grid size has on performance. By using
15We will continue to assess the performance of both RBFs to avoid trivialising the optimised

implementations.
16Future hardware advances will almost certainly remove this distinction in due course.
17As we are using different data, we can only compare speed, not registration accuracy.

Radial basis functions for non-rigid registration 84

all of the synthetic data sets, we may also be able to determine whether or not

the premise in Section 3.6 is correct – that is, are some test data sets more

amenable to evaluation techniques that employ linear interpolation?

Test 4 Using the software “Fast RBF” implementation, warp all eight syn-

thetic data sets – four using φ(r) = r2 log r and four using φ(r) = r.

Repeat the tests using a range of different grid sizes – that is, varying the

parameter H in the algorithm (Section 3.14.2).

This will allow us to compare the overall performance and accuracy of the

software “Fast RBF” method and also show the effect that the parameter H

has on performance. Again, by using all of the synthetic data sets, we may be

able to determine whether this technique is sensitive to the choice of test data.

Test 5 Using the hardware “Fast RBF” implementation, warp all eight syn-

thetic data sets – four using φ(r) = r2 log r and four using φ(r) = r.

Repeat the tests using a range of different grid sizes – again, varying the

parameter H in the algorithm.

As expected, this will allow us to compare the overall performance and

accuracy of the hardware “Fast RBF” method and show the effect that the

parameter H has on performance.

All of the above tests must of necessity use the same inputs. However, it

may be that one or more of the evaluation techniques is more dependent on

the inputs than others. The most obvious choice is the number of landmarks,

which we address in the following tests :

Test 6 Repeat all of the previous tests, taking timings only, with varying num-

ber of landmark pairs as inputs. These tests should include all grid sizes

previously used for the grid-based technique and all values of H previously

used for the “Fast RBF” techniques.

Radial basis functions for non-rigid registration 85

The above test will highlight how the execution time of each algorithm

varies with different numbers of landmarks. These tests will use multiple sets

of landmarks, from 10 to 500 in steps of 10, and will allow us to examine both

the warping time and the time necessary to solve the TPS transformation.

Test 7 Using the benchmark evaluation technique and the fastest/most accu-

rate optimised technique, warp and merge CT and MRI data sets from

the Visible Human Project and compare the results visually as well as by

similarity metrics.

The final test takes the competing techniques in terms of accuracy and speed

and uses these on real medical image data to provide a subjective (visual) and

objective (similarity metric) measurement of the suitability of the optimised

technique for multi-modal non-rigid medical image registration in three dimen-

sions.

3.17 Summary

In this chapter, we have discussed RBFs in the context of non-rigid registration

and described the design of synthetic test data and a number of image similarity

metrics before finally detailing the experimental software and the algorithmic

and implementation changes we have made to accelerate performance.

Finally, we have devised a test plan, the results of which will answer, among

others, the following crucial questions :

1. How much can we optimise the run time of an RBF based warp evaluation?

2. What effect do such optimisations have on warping accuracy?

3. How do the optimised techniques behave under different inputs?

4. Are the optimised methods accurate and/or fast enough for AR applica-

tions?

Radial basis functions for non-rigid registration 86

To answer these questions, we have done the following :

1. Designed and implemented an experimental software application to con-

trol all testing and to record results.

2. Designed and built synthetic test data sets, which will allow us to evaluate

the accuracy of a warp and the suitability of different image similarity

metrics.

3. Implemented brute force warp evaluation techniques in both software and

hardware versions.

4. Implemented the grid-based warping technique of [95, 96] to compare with

the new optimised implementations.

5. Extended the formulation of [101] to three dimensions and implemented

in both software and hardware versions.

6. Performed a structured test plan to exercise all algorithms under a range

of inputs and parameters.

Chapter 4 gives details of the results of the tests described in Section 3.16

and Chapters 5 and 6 discuss these results and how they have (or have not)

answered the above questions.

Chapter 4

Experimental results

This chapter presents the results of the experimental testing, using both syn-

thetic data and real CT and MRI data sets from the Visible Human Project [1].

Results are given in both tabular and graphical formats and in alternative

views, for example run times and registration accuracy are presented individu-

ally as well as a combined view which includes both aspects.

In this chapter, analysis and discussion is kept as concise as possible. Chap-

ter 5 provides a discussion of particular issues raised by these results and Chap-

ter 6 shows how we have answered the questions posed in Chapter 2.

As the use of purpose-designed synthetic test data allows a much more

rigorous comparison of registration accuracy than real-world data, the following

section provides the bulk of the material for discussion in Chapter 5. Section 4.2

shows sample images of merged CT and MRI data following registration of the

two data sets.

4.1 Synthetic data tests

As mentioned in Chapter 3, we have devised four sets of ground truth test data,

each of which has been warped twice – once for each RBF1 – using a given set
1φ(r) = r and φ(r) = r2 log r.

87

Experimental results 88

of landmarks. So we have eight synthetic data sets. Each algorithm is then

exercised to warp each set back to its unwarped equivalent (the ground truth).

As discussed in Section 3.6, we are using the same landmark pairs2 we used to

create the warped test data to ensure that we do not introduce any irregularities

due to misplaced landmarks.

This situation should give us the best possible result. With no landmark

placement errors and known ground truth data, we should be able to produce

a perfect warp of each test data set back to the ground truth.

However, this is not possible in practice as the warping function is not

lossless – see Section 3.9.1 – and there may also be slight numerical differences

when solving the TPS in the reverse direction. In any case, as we first noted

in Section 3.16, the gold standard against which we measure performance of

different implementations of the warp evaluation must be the full voxel-by-voxel

evaluation, performed in software – this is the most direct implementation of

the warping function (Equation 3.18), with no performance optimisations and

using double precision floating point arithmetic throughout.

The following sections give selected timings and image similarity metrics

for each of the five evaluation techniques, beginning with the gold standard.

Sections are ordered according to the test plan from Section 3.16. Full listings

of all experimental results are given in Appendix B.

4.1.1 Test 1 - Brute force evaluation in software

As mentioned in the previous section, the first test is intended to set the stan-

dard for all remaining tests. The brute force software implementation is theo-

retically the most accurate, being effectively a reversal of the method used to

prepare the test data sets.

However, we still need to determine the effect of the interpolation option
2Each landmark pair is swapped to effectively unwarp the warped test data.

Experimental results 89

used during warping (tri-linear interpolation versus nearest neighbour) and

compare performance of the chosen RBFs.

Overview

Table 4.1 shows the warping evaluation time, in seconds, and the Normalised

Mutual Information metric (NMI) for each combination of test data, RBF and

interpolation option3.

Data set RBF Interp. Warp time NMI

Regular linear gradient r2 log r TRI 790.143372 1.716064

Irregular linear gradient r2 log r TRI 789.893372 1.550476

Checkered cube + noise r2 log r TRI 791.614441 1.265181

Non-linear gradient r2 log r TRI 790.550395 1.688309

Regular linear gradient r2 log r NNI 788.178650 1.589758

Irregular linear gradient r2 log r NNI 786.234314 1.495663

Checkered cube + noise r2 log r NNI 786.240051 1.278012

Non-linear gradient r2 log r NNI 786.884338 1.593237

Regular linear gradient r TRI 331.373566 1.717397

Irregular linear gradient r TRI 333.835164 1.553860

Checkered cube + noise r TRI 331.353333 1.264702

Non-linear gradient r TRI 332.187354 1.687073

Regular linear gradient r NNI 327.192413 1.585659

Irregular linear gradient r NNI 327.035370 1.492595

Checkered cube + noise r NNI 327.078644 1.277094

Non-linear gradient r NNI 327.102142 1.590584

Table 4.1: Brute force evaluation in software - performance and accuracy.

Test data sets are all 256× 256× 256 voxels, each voxel is 8 bits. The same

729 landmark pairs were used for each run, and all tests were performed on the

same physical computer system.
3TRI = Tri-linear interpolation, NNI = Nearest neighbour interpolation.

Experimental results 90

Note that each of the four sections in Table 4.1 represents the same algorithm

performing the same amount of work. Only the content of the test data differs.

While the run times are all consistent for each section, there is more variability

in the NMI metric – this is discussed further in Section 5.1 of Chapter 5.

Performance versus accuracy

As one might intuitively expect, in most cases, using tri-linear interpolation

during backward mapping tends to increase the accuracy at the expense of

extending the warping time.

However, note the NMI scores in Table 4.1 for the test data with random

noise – the figures imply that tri-linear interpolation during backward mapping

gives a slightly worse result than using nearest-neighbour interpolation. Possible

reasons for this are discussed in Section 5.2 of Chapter 5.

Backward mapping using tri-linear interpolation

Figure 4.1 shows examples of some typical slices of the four φ(r) = r2 log r

synthetic data sets, before and after warping, together with difference images

of the same slices compared with the known ground truth. All of these images

are from the brute force software evaluation with tri-linear interpolation during

backward mapping.

Note that the difference images in Figure 4.1c have been inverted and gamma

adjusted for clarity (γ = 0.5) – the actual differences in voxel intensities are too

faint to be seen clearly when printed unenhanced.

From left to right, Figure 4.1 shows slice X = 128 from the regular gra-

dient data, slice X = 30 from the irregular gradient data, slice Y = 55 from

the random noise data and finally slice Z = 128 from the non-linear gradient

data. Note that the rightmost image represents a slice at the boundary of the

checkered pattern, which is why some parts of the image appear to switch from

Experimental results 91

(a) Slices from φ(r) = r2 log r warped data sets - from left: regular gradient, irregular gradient,

random noise, non-linear gradient.

(b) After warping using brute force software evaluation with tri-linear interpolation.

(c) Difference images, results versus ground truth (inverted and gamma adjusted for clarity,

γ = 0.5).

Figure 4.1: Brute force software evaluation, with tri-linear interpolation, using

RBF φ(r) = r2 log r.

dark to light following registration.

Backward mapping using nearest-neighbour interpolation

Figure 4.2 shows the same slice data as Figure 4.1, but this time the brute

force evaluation algorithm was run using nearest-neighbour interpolation during

backward mapping.

Experimental results 92

(a) Slices from φ(r) = r2 log r warped data sets - from left: regular gradient, irregular gradient,

random noise, non-linear gradient.

(b) After warping using brute force software evaluation with nearest-neighbour sampling.

(c) Difference images, results versus ground truth (inverted and gamma adjusted for clarity,

γ = 0.5).

Figure 4.2: Brute force software evaluation, with nearest-neighbour sampling,

using RBF φ(r) = r2 log r.

The results of the warp in Figure 4.2b, using nearest neighbour interpo-

lation, and the difference images in Figure 4.2c show characteristic aliasing

artifacts. Visually similar results are obtained from the φ(r) = r data sets,

which are not shown here.

We can see in Table 4.1 that the registration accuracy of the nearest neigh-

bour results compares poorly to tri-linear interpolation, hence the visual results

Experimental results 93

seem less appealing. However, it should be noted that the synthetic test data

has been intentionally designed to include sharp discontinuities in voxel inten-

sity and this will tend to expose aliasing artifacts more clearly.

Choice of radial basis function

Figures 4.1 and 4.2 both show data from the φ(r) = r2 log r tests. However, Ta-

ble 4.1 suggests that the φ(r) = r tests produce results of comparable accuracy

but with significantly shorter run times.

Figure 4.3 shows the equivalent of Figure 4.1 but using the φ(r) = r data

sets and evaluation algorithms.

We can compare the visual results of the two RBF warp evaluations by

looking at a 3D view of the difference image. Figure 4.4 shows a view of the

difference image between the φ(r) = r2 log r and φ(r) = r results, using the

regular linear gradient test data and tri-linear interpolation, which shows that

the two RBF implementations produce visibly similar results.

The “gold standard”

What we should note from the results of the brute force software evaluation is

that the best combination of performance and accuracy4 is achieved by using

tri-linear interpolation during backward mapping. Therefore, this is what we

shall use as the gold standard for comparing the performance of the optimised

evaluation techniques.

We also note that the run times for φ(r) = r are significantly faster than

φ(r) = r2 log r and, according to Rohr [138, p. 195], the former is the correct

TPS basis function for 3D data5. However, we will continue to monitor accuracy

and run time performance for both basis functions to see how the optimised

techniques are affected.
4Determined here by the run time and NMI metric in Table 4.1.
5For second order energy potentials.

Experimental results 94

(a) Slices from φ(r) = r warped data sets - from left: regular gradient, irregular gradient,

random noise, non-linear gradient.

(b) After warping using brute force software evaluation with tri-linear interpolation.

(c) Difference images, results versus ground truth (inverted and gamma adjusted for clarity,

γ = 0.5).

Figure 4.3: Brute force software evaluation, with tri-linear interpolation, using

RBF φ(r) = r.

Table 4.2 gives a complete set of run times and NMI metrics for the φ(r) = r

gold standard and Table 4.3 shows the same details for the φ(r) = r2 log r gold

standard. The overall registration accuracy – measured against the optimal

values in Table 3.3 – is also shown as a percentage figure to facilitate later com-

parison. Note that the maximum possible NMI score is 2.0 and the minimum

is 1.0.

Experimental results 95

Figure 4.4: 3D difference image of φ(r) = r2 log r and φ(r) = r results(inverted

and gamma adjusted for clarity, γ = 0.5).

Test data Warp time NMI %Overall

Regular linear gradient 331.373566 1.717397 71.74

Irregular linear gradient 333.835164 1.553860 55.39

Checkered cube + noise 331.353333 1.264702 26.47

Non-linear gradient 332.187354 1.687073 68.71

Table 4.2: Gold standard for φ(r) = r.

4.1.2 Test 2 - Brute force evaluation - hardware accelerated

As we mentioned in Section 3.16, the brute force hardware implementation using

tri-linear interpolation could also be considered as an informal gold standard

for hardware (GPU) based evaluation techniques. The main difference being

the limitation of 32-bit floating point precision using this technique.

This section details the main results from Test 2, which show how the loss

of numerical precision affects accuracy and how the use of the GPU-based im-

plementation affects run times.

Experimental results 96

Test data Warp time NMI %Overall

Regular linear gradient 790.143372 1.716064 71.61

Irregular linear gradient 789.893372 1.550476 55.05

Checkered cube + noise 791.614441 1.265181 26.52

Non-linear gradient 790.550395 1.688309 68.83

Table 4.3: Gold standard for φ(r) = r2 log r.

Brute force hardware results

Table 4.4 shows a summary of the results of the brute force hardware tests.

Comparing with the software gold standards in Tables 4.2 and 4.3, it is evident

that accuracy is degraded although run time is improved.

Data set RBF Warp time NMI %Overall %Gold

Regular linear gradient r 12.887721 1.622725 62.27 86.81

Irregular linear gradient r 13.285579 1.493154 49.32 89.03

Checkered cube + noise r 12.905877 1.199441 19.94 75.35

Non-linear gradient r 12.241180 1.526633 52.66 76.65

Regular linear gradient r2 log r 12.908881 1.622828 62.28 86.99

Irregular linear gradient r2 log r 12.903515 1.492722 49.27 89.52

Checkered cube + noise r2 log r 12.844133 1.199271 19.93 75.14

Non-linear gradient r2 log r 12.150575 1.526939 52.69 76.55

Table 4.4: Summary of hardware accelerated brute force results.

Looking at the average NMI scores for φ(r) = r we note that overall reg-

istration accuracy – measured against the optimal values in Table 3.1 – has

decreased by approximately 9.5% compared to the gold standard (that is from

55.6% down to 46.0%) while the run time has decreased by a factor of just

under 26 (down from 332.2 seconds to 12.8 seconds).

We can see a similar decrease in overall registration accuracy for φ(r) =

r2 log r (down to 46.0% on average) but a much more marked effect on run times

Experimental results 97

compared to the gold standard (improved by a factor of 62.3 from 790.5 to 12.7

seconds). In fact, Table 4.4 shows that the average run times for φ(r) = r2 log r

on this brute force hardware implementation are roughly equivalent to those

for φ(r) = r (12.7 versus 12.8 seconds respectively). Section 5.3 on page 141

discusses possible reasons why the effect of a more costly RBF may not be so

noticeable in GPU based warp evaluation techniques.

The rightmost column in Table 4.4 indicates the main effect of the loss of

floating point precision. These figures suggest that the best we can expect from

GPU based techniques is an average accuracy of 89% compared to the software

gold standard when using the NMI metric for comparison. However, as we know

the original spatial displacements for each voxel in the synthetic data sets, we

can assess the accuracy in geometric terms. Table 4.5 shows the spatial error

in millimetres of the brute force warp in hardware.

RBF Minimum Maximum Range Average Std. Dev.

φ(r) = r 0.000000 1.483833 1.483833 1.118361 0.793620

φ(r) = r2 log r 0.000000 1.489594 1.489594 1.131088 0.096907

Table 4.5: Spatial errors in millimetres from the brute force hardware warp.

4.1.3 Test 3 - Grid based evaluation - hardware assisted

This test is intended to show two things. First, we would like to find the best

possible accuracy that we can achieve by using this technique and compare this

with the gold standard. Secondly, we want to see what effect the choice of grid

size has on both accuracy and speed.

We already know that the use of the GPU for evaluation of the TPS trans-

formation suffers from a loss of numerical precision and we noted the effect

of this on warp accuracy in the preceding section. Whereas, in the original

method of Levin et al. [95, 96], the TPS transformation was GPU based, in this

Experimental results 98

implementation we have specifically chosen to keep this part of the algorithm

in software so that we can maximise the accuracy at the expense of run time.

The reason we made this choice is due to the fact that we are seeking the

best combination of accuracy and performance and we do not yet have any

information on the maximum possible accuracy of the technique (disregarding

run time for now). In [96] and [95] we have analyses of run time performance

which can guide us to an expectation of potential gains but these will almost

certainly be at the expense of accuracy as we saw in Section 4.1.2 earlier.

Therefore, in the results which follow, it must be borne in mind that the run

times of this technique can be improved but that the accuracy cannot. We fur-

ther discuss the rationale behind these decisions in the context of experimental

results in Section 5.4 on page 143.

Figure 4.5: Diagram showing what is meant by ‘a grid with a size of four’.

Overview

The synthetic test data sets are each 2563 voxels so a grid size of 125 rows

and 125 columns will result in cells which cover approximately 2 × 2 voxels.

This is the smallest grid we can achieve which should give us some theoretical

advantage over the brute force method. A grid of 255 rows by 255 columns is

Experimental results 99

equivalent to the brute force method as we are effectively transforming every

voxel individually.

In all of the tests in this section the grids will be square – that is, they will

have the same number of rows as columns. From now on, we will refer only to

the number of rows, the column count will always be the same. Also, the rows

and columns are counted as the spaces between the grid nodes, so a grid with

four rows will have 5× 5 ‘regular’ grid nodes plus 4× 4 additional nodes, which

are used for explicit triangulation as described in Section 3.13. Figure 4.5 shows

this schematically for a grid of size four. In general, a grid of size n will have

(n + 1)2 + n2 = 2(n2 + n) + 1 nodes (vertices).

Data set RBF Warp time NMI %Overall %Gold

Regular linear gradient r 157.723965 1.621512 62.15 86.64

Irregular linear gradient r 157.730304 1.486984 48.70 87.94

Checkered cube + noise r 157.711837 1.217262 21.73 82.08

Non-linear gradient r 155.340286 1.608784 60.88 88.61

Regular linear gradient r2 log r 373.404022 1.623591 62.36 87.08

Irregular linear gradient r2 log r 375.784742 1.487991 48.78 88.65

Checkered cube + noise r2 log r 375.772021 1.217586 21.76 82.06

Non-linear gradient r2 log r 375.802197 1.614749 61.47 89.31

Table 4.6: Summary of grid based evaluation using a grid of size 125.

Table 4.6 shows the warp times, NMI scores, percentage ratings for overall

warp accuracy and as a percentage of the gold standard, for a grid of size 125.

Here we can see that we can achieve just over 86% accuracy on average,

compared to the gold standard. Note that, for the synthetic data sets, we cannot

use a grid size of more than 125 without necessitating sub-voxel sampling.

However, the following section shows how varying the grid size, both higher

and lower, affects the accuracy and run time of this method.

Experimental results 100

Effect of grid size

Table 4.7 shows the run times and the accuracy compared to the gold standard

for various sizes of grid6.

These figures are the averages of all four test data sets for each RBF. The

timings and scores broken out by test data set are given in the full results in

Appendix B. The full results show that the average figures in Table 4.7 are a

fair representation of the experimental findings.

φ(r) = r φ(r) = r2 log r

Grid size Warp time %Overall %Gold Warp time %Overall %Gold

13 3.681314 46.80 83.88 5.952039 46.99 84.28

25 8.145888 48.15 85.97 16.798895 48.40 86.48

38 16.236258 48.26 86.15 36.260987 48.56 86.72

50 26.709111 48.32 86.24 61.480988 48.56 86.72

63 41.382379 48.35 86.29 96.401994 48.60 86.78

75 57.741379 48.34 86.27 136.080603 48.60 86.78

88 78.863673 48.36 86.30 186.673607 48.61 86.79

100 101.037948 48.34 86.28 240.583289 48.60 86.78

113 128.758472 48.38 86.34 306.935086 48.61 86.79

125 157.126598 48.36 86.31 375.190746 48.60 86.77

138 193.318782 48.37 86.32 456.998209 48.61 86.80

Table 4.7: The effect of grid size on run time and accuracy.

Figure 4.6 on page 101 shows the same information graphically. In Fig-

ure 4.6a we can see that the run time increases in a predictable manner accord-

ing to the number of nodes in the grid7.

Figure 4.6b suggests that the optimum accuracy is reached with a grid size

of around 60 and then appears to reach a plateau, with higher grid resolutions
6A grid of size 138 requires sub-sampling.
7The number of slices rendered is independent of the grid size.

Experimental results 101

(a) Run time versus grid size.

(b) Accuracy versus grid size.

Figure 4.6: Results for φ(r) = r and φ(r) = r2 log r for different grid sizes.

Experimental results 102

producing little or no gain in accuracy. We discuss this observation in Sec-

tion 5.4 of Chapter 5. Note that this warping evaluation technique does not

allow us to recover the spatial error statistics in the same way that we can for

the remaining techniques, we must rely on the NMI metric.

4.1.4 Test 4 - Software accelerated “Fast RBF” evaluation

This is the first test of the technique we have termed “Fast RBF”, which follows

the basic principles outlined by Livne and Wright [101]. This technique has not

previously been used for medical image registration, nor for any other practical

application.

For the same reasons we mentioned when discussing the grid based evalu-

ation in the previous section, we want to discover the maximum accuracy we

can obtain using this technique in the absence of any numerical precision lim-

its imposed by a GPU implementation. Therefore, this test looks primarily at

the accuracy of a totally software based implementation. We also see how the

parameter H, which controls the resolution of the warp evaluation, affects run

times and accuracy.

Overview

Table 4.8 shows the results of this test using an arbitrary value of H = 0.025.

In terms of grid cell size, this is approximately equivalent to a 6× 6× 6 block

of voxels.

As before, the table shows the warp times, NMI scores and percentage

ratings for overall warp accuracy and also as a percentage of the gold standard.

We can see that we have achieved over 98% accuracy on average, compared

to the gold standard when measured by NMI. This is a much better result

than the best of the grid-based warps in the previous test. The run times are

also an order of magnitude lower than the gold standard. As with the brute

Experimental results 103

Data set RBF Warp time NMI %Overall %Gold

Regular linear gradient r 45.793739 1.706122 70.62 98.42

Irregular linear gradient r 45.585709 1.547287 54.73 98.82

Checkered cube + noise r 45.603939 1.263534 26.35 99.57

Non-linear gradient r 48.760342 1.677530 67.75 98.60

Regular linear gradient r2 log r 69.015884 1.706521 70.65 98.66

Irregular linear gradient r2 log r 69.004898 1.546156 54.62 99.21

Checkered cube + noise r2 log r 69.159927 1.264482 26.45 99.71

Non-linear gradient r2 log r 77.914455 1.672714 67.27 97.74

Table 4.8: Summary of software “Fast RBF” evaluation using H = 0.025.

force hardware technique, we can also assess the accuracy in geometric terms.

Table 4.9 shows the spatial error in millimetres of the “Fast RBF” software

evaluation using H = 0.025.

RBF Minimum Maximum Range Average Std. Dev.

φ(r) = r 0.000069 1.622394 1.622325 0.033750 0.033254

φ(r) = r2 log r 0.000108 0.828189 0.828081 0.042332 0.032069

Table 4.9: Spatial errors in millimetres from the “Fast RBF” software evaluation

using H = 0.025.

However, we must bear in mind that this technique is sensitive to the number

of landmarks in combination with the value of H. The process of anterpolating

TPS coefficients out to the nodes of the surrounding cell can have the effect

of either increasing or reducing the number of TPS transformation evaluations

necessary. For example, with large H and many densely distributed landmarks

we may encompass more than eight landmarks per cell and so reduce the overall

number after anterpolation. At the other extreme, an evenly distributed sparse

set of landmarks and small H could result in at most one landmark per cell and

an eight-fold increase in the number of TPS evaluations necessary.

Experimental results 104

Later, in Section 4.1.6 we will look at the effect of the number of landmarks

on all of the evaluation techniques. For now, the following section shows how

varying the grid size by adjusting the parameter H (both higher and lower)

affects the accuracy and run time of this method.

Effect of grid size - parameter H

Table 4.10 shows the run times and the NMI accuracy compared to the gold

standard for various values of H. These figures are the averages of all four test

data sets for each RBF.

φ(r) = r φ(r) = r2 log r

H Warp time %Overall %Gold Warp time %Overall %Gold

0.105 11.433087 41.28 91.24 11.855772 40.58 90.85

0.095 11.401259 41.30 91.26 11.920685 41.44 91.38

0.085 11.506339 42.56 92.02 12.075928 38.88 89.69

0.075 11.617253 42.82 92.20 12.325167 37.26 88.77

0.065 12.490433 47.98 95.36 13.516259 37.10 88.59

0.055 13.106529 74.84 96.41 15.400303 45.30 93.77

0.045 15.942261 49.68 97.43 20.884502 51.24 97.41

0.035 22.830587 53.02 98.45 33.098789 51.46 97.52

0.025 46.435932 54.86 99.57 71.273791 54.74 99.55

0.015 499.046082 55.44 99.92 608.992973 55.22 99.83

Table 4.10: The effect of parameter H on run time and accuracy for the software

“Fast RBF” method.

Figure 4.7 on page 107 shows the same information graphically. The shape

of the plot in Figure 4.7a suggests that the run time is strongly influenced by

the cube of the grid size (i.e. (c
H)3 where c is some constant), which agrees

with Livne and Wright [101, pp. 6,15] in which the complexity is derived from

Experimental results 105

the following :

W ∼ (n + m)pd +
(c

H

)d
(4.1)

where n is the number of landmarks (centres), m is the number of voxels (eval-

uation points), p is the degree of the polynomial, d is the dimension and c is a

constant.

Figure 4.7b shows an upward trend in accuracy with decreasing H although

there is a marked dip in the φ(r) = r2 log r plot which suggests that the charac-

teristics of this technique are not as straightforward as the previous grid-based

evaluation. Looking at the φ(r) = r plot on the same chart also shows a possible

dip in accuracy at a similar point, though this is not clear.

As Figure 4.7b is based on an average of all four test data sets, the effect may

be clearer by looking at individual plots for each type of test data. Figure 4.8

on page 108 shows exactly that. Figure 4.8a shows the breakdown of accuracy

by test data set for φ(r) = r and Figure 4.8b shows the same for φ(r) = r2 log r.

We will discuss this effect in more detail in Section 5.5 of Chapter 5.

We can also look at the spatial errors arising from different values of H.

Tables 4.11 and 4.12 show the spatial errors in millimetres of the “Fast RBF”

software evaluation using the same values of H as in Table 4.10.

4.1.5 Test 5 - Hardware accelerated “Fast RBF” evaluation

The hardware implementation of the “Fast RBF” method moves all of the

processing, except the anterpolation stage, onto the GPU. As described in Sec-

tion 3.15, this technique uses 32-bit floating point textures to store the grid

Y, the coarse level expansion coefficients Λ(Y) and the coarse level summation

results in the grid X.

Due to the reduced numerical precision in this implementation, we might

anticipate a reduction in accuracy. This test will attempt to quantify that

reduction – if it exists – and see how it is affected by the choice of H.

Experimental results 106

H Minimum Maximum Range Average Std. Dev.

0.015 0.000037 1.071275 1.071238 0.013455 0.013465

0.025 0.000069 1.622394 1.622325 0.033750 0.033254

0.035 0.000149 1.404107 1.403958 0.066507 0.049985

0.045 0.000243 2.843206 2.842963 0.099676 0.082942

0.055 0.000215 2.846024 2.845809 0.144525 0.121993

0.065 0.000636 3.772129 3.771493 0.192216 0.165122

0.075 0.001314 4.529274 4.527960 0.311585 0.223631

0.085 0.000966 3.982248 3.981282 0.360420 0.249317

0.095 0.000463 5.363233 5.362770 0.400725 0.300441

0.105 0.000715 4.659923 4.659208 0.398366 0.273161

Table 4.11: Spatial errors in millimetres from the “Fast RBF” software evalu-

ation for different values of H, using φ(r) = r.

H Minimum Maximum Range Average Std. Dev.

0.015 0.000113 0.436184 0.436071 0.028855 0.017048

0.025 0.000108 0.828189 0.828081 0.042332 0.032069

0.035 0.000293 0.873480 0.873187 0.133756 0.071494

0.045 0.000174 1.796661 1.796487 0.117894 0.088253

0.055 0.000875 2.197619 2.196744 0.285848 0.157878

0.065 0.001454 2.672732 2.671278 0.707298 0.324460

0.075 0.001936 4.234098 4.232162 0.576603 0.325622

0.085 0.003252 3.447342 3.444090 0.657323 0.338104

0.095 0.001066 4.751118 4.750052 0.437001 0.318578

0.105 0.000732 4.726483 4.725751 0.460985 0.331315

Table 4.12: Spatial errors in millimetres from the “Fast RBF” software evalu-

ation for different values of H, using φ(r) = r2 log r.

Experimental results 107

(a) Run time versus H.

(b) Accuracy versus H.

Figure 4.7: Results for software “Fast RBF” showing φ(r) = r and φ(r) =

r2 log r metrics for different values of H.

Experimental results 108

(a) Accuracy versus H for φ(r) = r.

(b) Accuracy versus H for φ(r) = r2 log r.

Figure 4.8: Accuracy of φ(r) = r and φ(r) = r2 log r for different values of H

by test data type – software implementation.

Experimental results 109

Overview

Table 4.13 shows the results of this test using a value of H = 0.025. This is the

same value we used for the summarised results of the software implementation

in the previous section.

The table shows the warp times, NMI scores and percentage ratings for the

overall warp accuracy and as a percentage of the software gold standard.

Data set RBF Warp time NMI %Overall %Gold

Regular linear gradient r 0.954813 1.618305 61.84 86.19

Irregular linear gradient r 0.973264 1.490224 49.02 88.50

Checkered cube + noise r 0.972872 1.199092 19.90 75.20

Non-linear gradient r 0.893234 1.523904 52.40 76.26

Regular linear gradient r2 log r 1.006130 1.617567 61.76 86.24

Irregular linear gradient r2 log r 0.951575 1.491939 49.20 89.35

Checkered cube + noise r2 log r 0.957887 1.199444 19.94 75.19

Non-linear gradient r2 log r 0.892530 1.525948 52.60 76.40

Table 4.13: Summary of hardware “Fast RBF” evaluation using H = 0.025.

We can see that the 98% average accuracy against the gold standard, which

we noted for the software “Fast RBF” implementation, has now dropped to just

under 82%. However, it is also worth noting that we are now measuring sub-

second warping times which makes this the fastest implementation so far. In

addition, we saw from the hardware implementation of the brute force technique

in Section 4.1.2 that the best accuracy we could anticipate from a GPU based

implementation is 89% of the gold standard, which is consistent with what we

have found.

As with the previous technique, we can also assess the accuracy in geometric

terms. Table 4.14 shows the spatial error in millimetres of the “Fast RBF”

hardware evaluation using H = 0.025.

The following section shows how varying the grid size by adjusting the

Experimental results 110

RBF Minimum Maximum Range Average Std. Dev.

φ(r) = r 0.000098 1.622334 1.622236 0.034282 0.033201

φ(r) = r2 log r 0.000092 0.827431 0.827339 0.042255 0.032132

Table 4.14: Spatial errors in millimetres from the “Fast RBF” hardware evalu-

ation using H = 0.025.

parameter H (both higher and lower) affects the accuracy and run time of this

method. Given the above summary, we would expect to see similar results to

the software “Fast RBF” implementation but with generally lower accuracy

metrics.

Effect of grid size - parameter H

Table 4.15 shows the run times and the accuracy compared to the gold standard

for various values of H using the hardware accelerated “Fast RBF” implemen-

tation. As usual, these figures are the averages of all four test data sets for each

RBF.

Figure 4.9 on page 111 shows the same information graphically. As we saw

with the software implementation of this technique, the shape of the plot in

Figure 4.9a supports the theory that the run time of this implementation is

inversely proportional to the cube of the grid size.

Figure 4.9b shows the upward trend in accuracy with decreasing H and the

same dip for φ(r) = r2 log r, although the overall accuracy figures are lower

than their software counterparts from the previous test.

As with the software results in the previous section, Figure 4.9b is based

on an average of all four test data sets and the effect is clearer by looking

at individual plots for each type of test data. In Figure 4.10 on page 112,

Figure 4.10a shows the breakdown of accuracy by test data set for φ(r) = r and

Figure 4.10b shows the same for φ(r) = r2 log r.

Experimental results 111

(a) Run time versus H.

(b) Accuracy versus H.

Figure 4.9: Results for hardware “Fast RBF” showing φ(r) = r and φ(r) =

r2 log r metrics for different values of H.

Experimental results 112

(a) Accuracy versus H for φ(r) = r.

(b) Accuracy versus H for φ(r) = r2 log r.

Figure 4.10: Accuracy of φ(r) = r and φ(r) = r2 log r for different values of H

by test data type – hardware implementation.

Experimental results 113

φ(r) = r φ(r) = r2 log r

H Warp time %Overall %Gold Warp time %Overall %Gold

0.105 0.456613 37.31 68.04 0.456223 36.66 67.08

0.095 0.460664 37.49 68.39 0.469113 37.71 68.93

0.085 0.463629 38.82 70.35 0.479706 36.07 65.92

0.075 0.463415 39.88 72.61 0.471908 33.53 61.71

0.065 0.488655 42.76 76.62 0.479117 34.76 63.61

0.055 0.516709 44.08 78.66 0.504753 42.24 76.13

0.045 0.561979 44.49 79.49 0.575920 44.38 79.42

0.035 0.814210 45.08 80.40 0.674261 44.46 79.51

0.025 0.948546 45.79 81.54 0.952030 45.87 81.81

0.015 2.928600 45.95 81.81 2.847230 45.82 81.71

Table 4.15: The effect of parameter H on run time and accuracy for the hard-

ware “Fast RBF” method.

As before, we can look at the spatial errors arising from different values of

H. Tables 4.16 and 4.17 show the spatial errors in millimetres of the “Fast

RBF” hardware evaluation using the same values of H as in Table 4.15.

4.1.6 Test 6 - Varying the number of landmarks

The number of landmark pairs supplied to the warping function (Equation 3.18

on page 37) is one of the factors that determines the algorithmic cost of evalu-

ating the function. This also applies to the algorithmic cost of solving the TPS

transformation as we described in Section 3.3.1.

The purpose of this test is to produce some empirical evidence of the way

that each of the warp implementation techniques perform with different num-

bers of landmarks. Here, we are not concerned with registration accuracy, just

with execution time. All of the tests in this section use the same RBF, φ(r) = r,

so that we remove any timing differences caused by different implementations

Experimental results 114

H Minimum Maximum Range Average Std. Dev.

0.015 0.000015 1.071309 1.071294 0.014006 0.013453

0.025 0.000098 1.622334 1.622236 0.034282 0.033201

0.035 0.000202 1.404055 1.403853 0.067216 0.050067

0.045 0.000269 2.843270 2.843001 0.100291 0.083141

0.055 0.000296 2.845291 2.844995 0.144578 0.121903

0.065 0.000755 3.772151 3.771396 0.192442 0.165332

0.075 0.001263 4.529306 4.528043 0.312066 0.224119

0.085 0.001024 3.982281 3.981257 0.361054 0.249665

0.095 0.000401 5.363257 5.362856 0.401427 0.300769

0.105 0.000785 4.659948 4.659163 0.399027 0.273436

Table 4.16: Spatial errors in millimetres from the “Fast RBF” hardware evalu-

ation for different values of H, using φ(r) = r.

H Minimum Maximum Range Average Std. Dev.

0.015 0.000104 0.435423 0.435319 0.029072 0.017022

0.025 0.000092 0.827431 0.827339 0.042255 0.032132

0.035 0.000260 0.874012 0.873752 0.134088 0.071565

0.045 0.000236 1.795971 1.795735 0.118055 0.088311

0.055 0.000669 2.198010 2.197341 0.285559 0.157897

0.065 0.001243 2.672881 2.671638 0.706471 0.324522

0.075 0.002013 4.233896 4.231883 0.577266 0.325446

0.085 0.003227 3.447519 3.444292 0.658233 0.338105

0.095 0.001042 4.751009 4.749967 0.436963 0.318877

0.105 0.000706 4.726399 4.725693 0.460962 0.331480

Table 4.17: Spatial errors in millimetres from the “Fast RBF” hardware evalu-

ation for different values of H, using φ(r) = r2 log r.

Experimental results 115

of the more complex RBF and just concentrate on the effect of the number of

landmarks.

Before we look at each warping technique in turn, we will examine the run

times of the function that solves the TPS transformation.

TPS solution time

The experimental software records run times for each part of the warping pro-

cedure separately. Therefore, we have plenty of data from which to extract

details of the time taken to solve the TPS transformation for different numbers

of landmarks.

Figure 4.11 shows two charts. In Figure 4.11a, the time taken to solve the

TPS transformation is plotted against the number of landmarks, n. In this

chart, each point represents the average of 33 runs – one brute force software,

one brute force hardware, 11 grid-based, 10 “Fast RBF” software and 10 “Fast

RBF” hardware.

From [101, p. 2], we expect the complexity of the TPS solver algorithm to be

O(n3). So the second chart, Figure 4.11b, attempts to verify this by plotting

the same timings against the cube of the number of landmarks (i.e. n3) to

show that this implementation of the TPS solver performs reasonably against

expectation.

Now we will look at each of the warp evaluation techniques in turn and see

how they perform when varying the number of landmarks.

Brute force software implementation

The brute force implementation evaluates Equation 3.18 once for every voxel in

the target data set and the summation term in the equation is limited by the

number of landmarks. Therefore, as we noted in Section 3.14, the brute force

method has a cost of O(mn), where m is the number of voxels and n is the

Experimental results 116

(a) TPS solution time versus number of landmarks, n.

(b) TPS solution time versus n3 with regression line.

Figure 4.11: Empirical evaluation of TPS solution time with varying number

of landmarks.

Experimental results 117

number of landmarks, and so we expect to see a linear relationship between the

number of landmarks and the warp evaluation time.

Figure 4.12: Effect of the number of landmarks on run time of the brute force

software implementation.

Figure 4.12 shows the results of this test, which is clearly in line with ex-

pectations. Average run times range from 10 seconds for 10 landmarks to 230

seconds for 500 landmarks.

Brute force hardware implementation

As the underlying algorithms are identical, the hardware implementation of the

brute force evaluation should behave in exactly the same way as the software

implementation.

Figure 4.13 shows the results of this test, which shows exactly what we

would expect. The run times for the hardware implementation are, on average,

just 4% of the equivalent software times – ranging from 0.48 seconds for 10

landmarks to 8.85 seconds for 500 landmarks.

Experimental results 118

Figure 4.13: Effect of the number of landmarks on run time of the brute force

hardware implementation.

Grid-based implementation

The run time of the grid based warp evaluation should theoretically depend on

the number of landmarks and the size of the grid. Figure 4.14 shows multiple

plots, each data series representing a particular size of grid.

This chart shows a clear linear relationship, from which it should be feasible

to predict the expected run time for higher numbers of landmarks by extrapo-

lation.

Table 4.18 shows predicted warp evaluation times for each grid size used in

the tests, using 729 landmarks. The third column in the table shows the actual

times we measured during the tests with the synthetic data sets (which had 729

landmarks). We can see that it is possible to predict the warp evaluation times

quite accurately where we use relatively fine grids but less accurately where we

use coarse grids.

One reason we see this effect may be because, with coarse grids, the warp

Experimental results 119

Figure 4.14: Effect of the number of landmarks on run time of the grid-based

implementation.

Grid Predicted Actual Error %Error

13 2.227066 3.681314 1.454248 39.50

25 6.701287 8.145888 1.444601 17.73

38 14.809274 16.236258 1.426983 8.79

50 25.264745 26.709111 1.444367 5.41

63 39.826748 41.382379 1.555631 3.76

75 56.314812 57.741379 1.426567 2.47

88 77.247539 78.863673 1.616134 2.05

100 99.842098 101.037948 1.195850 1.18

113 127.367765 128.758472 1.390707 1.08

125 155.905561 157.126598 1.221037 0.78

138 189.905122 193.318782 3.413661 1.77

Table 4.18: Predictions of warp times for the grid-based method.

Experimental results 120

evaluation time is small compared to the ‘fixed cost’ time taken to prepare the

data – i.e. load textures, render slices, recover GPU buffer, etc. When we use

finer grids and so have a longer overall warp evaluation time, the effect of this

fixed cost becomes negligible.

“Fast RBF” software implementation

As we saw in Section 4.1.4, the run times for the “Fast RBF” implementation

vary with (c
H)3 and therefore cover a very wide range with the chosen values

of H (0.015 to 0.105). The run time range is too wide to be shown clearly on

a single chart, we have to break it down further.

The three charts in Figures 4.15, 4.16 and 4.17 show all the results for grid

sizes of 0.015 up to 0.105. Note that the scale of the y axis differs significantly

between these charts – Figure 4.15 covers a range of run times from zero to

500 seconds while Figure 4.16 ranges from zero to 50 seconds and Figure 4.17

covers just 1.5 seconds in total.

Figure 4.15: Effect of the number of landmarks on run time of the “Fast RBF”

software implementation – H = 0.015.

In Figure 4.17, there is still a clearly defined relationship between the num-

Experimental results 121

Figure 4.16: Effect of the number of landmarks on run time of the “Fast RBF”

software implementation – H = 0.025 . . . 0.055.

Figure 4.17: Effect of the number of landmarks on run time of the “Fast RBF”

software implementation – H = 0.065 . . . 0.105.

Experimental results 122

ber of landmarks and the run time, although some variations in run time appear

as peaks on the chart. This may or may not be due to the magnified y axis

scale – we discuss this further in Section 5.6 of Chapter 5.

In general, these charts suggest that the major factor affecting run time

for this technique is the value of the parameter H rather than the number of

landmarks. The individual plots do not cross each other8 but tend to diverge

with increasing numbers of landmarks.

“Fast RBF” hardware implementation

As with the software implementation of the “Fast RBF” method, the hardware

implementation exhibits a wide range of run times depending on the value of

the parameter H.

Again, the effect of varying the number of landmarks when using this tech-

nique is best shown on three separate charts, each with a different scale in the

y axis.

Following the same breakdown as the software “Fast RBF” implementation,

the three charts in Figures 4.18, 4.19 and 4.20 show the results for grid sizes of

0.015 up to 0.105. The scale of the y axis in Figure 4.18 covers a range of run

times from 0.5 to 2.0 seconds while Figure 4.19 ranges from 0.25 to 1.0 seconds

and Figure 4.20 covers just 0.15 seconds overall.

Notice that the chart in Figure 4.18, which is at the same scale as the ‘peaky’

chart in Figure 4.17, shows hardly any anomalies in the run time measurements.

However, as we decrease the run time scale to accommodate larger values of H,

the peaks tend to reappear – see Figures 4.19 and 4.20. As mentioned in the

previous section, we discuss this further in Section 5.6 of Chapter 5.
8Apart from the ‘noise’ in Figure 4.17.

Experimental results 123

Figure 4.18: Effect of the number of landmarks on run time of the “Fast RBF”

hardware implementation – H = 0.015.

Figure 4.19: Effect of the number of landmarks on run time of the “Fast RBF”

hardware implementation – H = 0.025 . . . 0.055.

Experimental results 124

Figure 4.20: Effect of the number of landmarks on run time of the “Fast RBF”

hardware implementation – H = 0.065 . . . 0.105.

4.2 Visible Human data tests

The final set of tests use MRI and CT data sets from the Visible Human

Project [1]. Figure 4.21 shows example cut-away views of 3D reconstructions

built from the data we used for this test.

(a) MRI Data. (b) CT Data.

Figure 4.21: 3D reconstructions using Visible Human data sets.

Experimental results 125

4.2.1 Test 7 - CT and MRI registration

The purpose of this test is to register 3D medical image data sets of the same

subject acquired by different imaging modalities. As we did with the synthetic

data tests, we will use the NMI metric to provide a quantitative view of the

registration accuracy, but we will also concentrate on a visual inspection of the

data both before and after warping.

We chose the NMI metric for two primary reasons – first, this metric is

suitable for multi-modal image registration and second, as Figure 4.21 shows, we

do not have a complete overlap in the image data. As mentioned in Section 3.5.5,

the NMI metric is overlap invariant.

Overview

As mentioned in the test plan in Section 3.16, this test will involve three regis-

tration procedures.

1. Perform the brute force software warp evaluation to transform the MRI

data into the CT image space.

2. Perform the same warp using the most accurate optimised technique from

the earlier tests – the “Fast RBF” software implementation.

3. Finally, perform the warp again using the fastest optimised technique

from the earlier tests – the “Fast RBF” hardware implementation.

After we have completed the three warp evaluations, we will compare run

times, image similarity metrics and visual results of all techniques.

The first step is to identify homologous points on the two data sets to create

a set of landmark pairs. Figure 4.22 shows a sample view of this process. The

intention is to warp the MRI data set (Figure 4.22a) into the image space

occupied by the CT data set (Figure 4.22b).

Experimental results 126

(a) Source data set – MRI.

(b) Target data set – CT.

Figure 4.22: Manual selection of homologous landmarks on CT and MRI data.

Experimental results 127

Before we start warping, we calculate the NMI metric on the CT and MRI

data sets to measure the baseline similarity:

NMI metric for unwarped MRI and CT data : 1.087436

Brute force CT/MRI registration - software

As with the previous tests, we will use the brute force software implementation

to set the target standard.

For ease of comparison, both the CT and MRI data sets have been resampled

into 2563 3D images, each therefore containing 16,777,216 equally sized voxels.

Using the experimental software, we have manually marked 53 pairs of matching

points from the two sets of data, which we will use for performing all warp

evaluations.

(a) MRI before warp. (b) MRI after warp.

Figure 4.23: A sample 2D slice from the MRI data set, before and after warping.

Figure 4.23 shows a single slice through the MRI data set before and after

applying the brute force warp evaluation. By colourising slices from the CT

and MRI data sets, we can visualise the result of the registration a little more

clearly. Figure 4.24 on page 128 shows two merged images – Figure 4.24a shows

the CT data (blue) and MRI data (yellow) before the MRI data set had been

Experimental results 128

warped and Figure 4.24b shows the same slices after warping the MRI data.

(a) Before registration. (b) After registration.

Figure 4.24: Merged images of colourised CT data (blue) and MRI data (yel-

low), before and after registration.

Measurements for the software brute force warp evaluation are as follows

Brute force software evaluation time : 32.287069 seconds

NMI for warped MRI and CT data : 1.123700 (gold standard)

“Fast RBF” CT/MRI registration - software

The second part of this test is to perform the same warp evaluation on the

MRI data set, this time using the “Fast RBF” software evaluation technique.

The synthetic data tests in Section 4.1 showed this technique to be the most

accurate when compared to the gold standard although we need to decide on a

value of the parameter H.

If we look back at Table 4.10 on page 104, we can see that the greatest

accuracy (99.78%) was achieved with H = 0.015. However, we also obtained an

accuracy of 98.85% with H = 0.025 but with a significantly reduced run time

Experimental results 129

and a maximum spatial error of 1.6mm (average 0.033750, sigma 0.033254).

A cost of 0.93% in accuracy at the gain of more than tenfold improvement

in run time seems like a fair compromise. We have no better scientific method

of choosing H so, for the “Fast RBF” tests, we will use H = 0.025 as a good

balance between execution time and accuracy.

Measurements for the software “Fast RBF” warp evaluation are as follows

“Fast RBF” software evaluation time : 19.475016 seconds

NMI for warped MRI and CT data : 1.123614 (99.99% of gold standard)

Figure 4.25 shows a greatly enhanced (gamma adjusted, γ = 0.2) difference

image of a typical 2D slice of the warped MRI data set. The image represents

the intensity differences between the brute force software result and the “Fast

RBF” software result.

Overall, 91.14% of voxels match exactly and a further 8% are no more than

3 intensity points different (intensities range from 0. . . 255). The chart in Fig-

ure 4.25b shows the count of voxels against intensity difference for mismatched

voxels only.

“Fast RBF” CT/MRI registration - hardware

The final part of this test is to perform the warp of the MRI data using the “Fast

RBF” evaluation technique implemented in hardware. As with the previous test

we will use H = 0.025.

As we showed with the software implementation in the previous section,

Figure 4.26 shows a gamma adjusted (γ = 0.5) difference image of a typical 2D

slice of the warped MRI data set. This image represents the intensity differences

between the brute force software result and the “Fast RBF” hardware result.

In contrast to the software “Fast RBF” test, only 81.79% of voxels match

Experimental results 130

(a) Difference image.

(b) Intensity differences.

Figure 4.25: Differences between brute force and “Fast RBF” software imple-

mentation using H = 0.025.

Experimental results 131

(a) Difference image.

(b) Intensity differences.

Figure 4.26: Differences between brute force and “Fast RBF” hardware imple-

mentation using H = 0.025.

Experimental results 132

exactly and a further 16% are within 20 intensity points different. The chart

in Figure 4.26b shows the count of voxels against intensity difference for mis-

matched voxels.

Measurements for the hardware “Fast RBF” warp evaluation are as follows

“Fast RBF” hardware evaluation time : 0.646321 seconds

NMI for warped MRI and CT data : 1.123768 (> 100% of gold standard)

Looking at these figures, it is interesting to note that we appear to have a

higher NMI score than we did for the equivalent brute force warp evaluation.

Intuitively, we suspect this must be misleading – we have already seen with the

synthetic data tests that the optimised software routines are less accurate than

the software brute force method and that the hardware accelerated techniques

suffer further due to loss of numerical precision.

In addition, examination of the difference image, created from the brute

force software result and the “Fast RBF” hardware result, shows more signifi-

cant mismatches of intensity values than the software “Fast RBF”. How, then,

can this warp appear to be more accurate than the brute force method? We

will discuss this in Section 5.1 of Chapter 5.

CT/MRI registration - visual results

Presenting the result of warping and merging multi-modal medical image data

in 3D is not easy. However, by first segmenting the bony structures from the

CT data we can make the visualisation of the merged data much more easy to

examine.

The images in this section use the warped MRI data set that was produced

by the “Fast RBF” hardware implementation.

Figure 4.27 shows a 3D reconstruction of the CT data after the bony struc-

Experimental results 133

Figure 4.27: A cutaway view of the bony structures segmented from the CT

data set.

Experimental results 134

tures have been segmented using a simple threshold. By merging the warped

MRI data with the segmented CT data, we can get a clearer picture of the

registration accuracy.

Figure 4.28 shows 2D slices from the warped MRI data set and segmented

CT data set, which we have colourised to make it easier to discriminate between

them. Figures 4.28a and 4.28b show the warped MRI and CT data respectively,

while Figure 4.28c shows the merged data for the same image slice.

(a) Colourised MRI slice. (b) Colourised segmented CT slice.

(c) Merged data.

Figure 4.28: Colourised slices from the warped MRI data and segmented CT

data.

Experimental results 135

Finally, Figure 4.29 shows a 3D view of the combined data sets. The detailed

view in Figure 4.29b represents a magnified image of the highlighted rectangular

region in Figure 4.29a. The images in these figures were produced using the

software 3DView, which was developed during the course of this research [141].

(a) Combined MRI and segmented CT

data in 3D.

(b) Detail view of highlighted area.

Figure 4.29: A cutaway 3D view of the combined MRI and CT data showing a

detailed area.

4.3 Summary

Using the results of the synthetic data tests, we can see certain patterns emerg-

ing. If we consider the maximum accuracy achieved from each technique and

look at the effect of the type of test data used, we can see that the most “ac-

curate” results in terms of NMI score are produced using the data with the

regular linear gradient and the non-linear gradient, whilst the least accurate

results are obtained using the noisy data.

Figure 4.30 shows this information as a series of bar charts for φ(r) = r.

The equivalent data for φ(r) = r2 log r is almost identical. The brute force

software implementation consistently scores highest, followed by the software

Experimental results 136

Figure 4.30: Maximum accuracy measured based on NMI score for each tech-

nique using φ(r) = r.

implementation of the “Fast RBF” warp evaluation. The brute force hardware

implementation is always less accurate than the software equivalent and the

hardware implementation of the “Fast RBF” technique matches it across all

types of test data. The grid based warp evaluation appears to be more sensitive

to the type of test data than the other techniques. It performs better with noisy

data and the data with a non-linear gradient than it does with the two data

sets containing linear gradients. However, its accuracy never matches that of

the software “Fast RBF” technique.

Figure 4.31 shows a scatter plot of accuracy against logarithmic time for all

of the synthetic data tests using φ(r) = r. Due to the differences in NMI scores

for the synthetic data sets, the scatters form three distinct horizontal bands,

as marked by the braces. These indicate – 1) the regular linear gradient and

non-linear gradient data, 2) the irregular linear gradient data and 3) the data

with random noise.

We can see that the software “Fast RBF” technique appears to be the most

Experimental results 137

Figure 4.31: Accuracy versus time for all techniques using φ(r) = r.

accurate apart from the brute force warp, and also exhibits a good compromise

between run time and accuracy. Remember that the grid based technique could

be made faster by moving more processing to the GPU but, as we have shown

with the other hardware implementations, would possibly lose accuracy. The

fastest technique – the hardware implementation of the “Fast RBF” method – is

also the least accurate although the performance compared to the brute force

software warp is impressive.

The following chapter discusses the issues raised by these results.

Chapter 5

Discussion

In the previous chapter, a number of questions were raised by observing the

results, on which we deferred discussion. In this chapter, we will examine these

questions in more detail. They are as follows :

• What is the effect of test data design on the NMI metric?

• How does tri-linear interpolation perform compared with nearest-neighbour

sampling?

• How does the choice of RBF affect each warp evaluation technique?

• What is the explanation for the apparent limitations of the grid-based

evaluation?

• How does the “Fast RBF” technique behave with varying H?

• How does the “Fast RBF” technique behave with varying number of land-

marks?

The following sections address each of these items in turn.

138

Discussion 139

5.1 The effect of test data design on the NMI metric

As with all mutual information metrics, NMI is not a perfect measurement of

image similarity. The limitations of MI have been recognised and documented

by a number of authors [4, 103, 128, 134, 135]. As MI is a statistical measure,

it relies on the existence of sufficient information in the image data to provide

a consistent response. It is also problematic when faced with interpolation

artifacts [171], which are almost inevitable in multi-modal image registration

due, at the least, to differing voxel dimensions. Interpolation artifacts can

appear as a pattern of alternating local maxima and minima in the registration

function and prohibit sub-voxel registration accuracy in techniques which rely

on maximisation of MI [4, 126, 171].

In the tests using synthetic data, we saw a much weaker NMI response with

the ‘noisy’ data set than we did with the others. See, for example, Figures 4.30

and 4.31 in Section 4.3. However, the full results in Appendix B show similar

weak responses for all of the other metrics we measured.

For the same reasons, an image with too little structure (e.g. large areas

of similar intensity) is just as undesirable as a noisy image. As Andronache

describes in [4], this problem is very common in multi-modal image registration

because not all tissue types can be seen in all modalities. As with noisy data,

featureless data also gives a low MI response but Andronache demonstrated

that this response starts to increase as soon as a structureless image overlaps a

region of higher structural content.

This is a possible cause of the unexpected NMI result we saw in the CT/MRI

registration tests in Section 4.2.1. Figure 4.22 shows the large, homogenous

areas in the CT image and the corresponding but more structured MRI equiva-

lent. In this situation it is not unreasonable for there to be some inconsistency

reflected in the NMI metric. The tests with synthetic data led us to expect

a decrease in accuracy of approximately 5% between the software brute force

Discussion 140

technique and the hardware implementation of the “Fast RBF” technique. In

practice, the NMI metrics we measured for the two techniques with this data

only differed by a small amount.

5.2 Tri-linear interpolation versus nearest-neighbour

In Section 4.1.1 we considered two interpolation options when evaluating a warp

function. We looked at the effect of interpolator on the NMI metric for each of

the synthetic data sets and found that all except the ‘noisy’ data gave a higher

score when using TRI than they did with NNI.

In Section 5.1, we pointed out one of the limitations of MI as a similarity

metric to be its susceptibility to interpolation artifacts. Pluim et al. [127] com-

pared TRI with PVI in this context and, in 2003, Tsao [171] presented a study

which, for rigid multi-modal registration, characterised the effects of eight differ-

ent interpolators on MI metrics including the two we used – nearest neighbour

and tri-linear interpolation. Tsao gave strategies for reducing interpolation ar-

tifacts, which include jittered sampling and histogram blurring. In addition,

Rohde et al. [134, 135] showed that these artifacts are not restricted to MI but

are also found in other metrics such as cross correlation and least squares and

that interpolation artifacts can also occur in images with no noise [132].

Tsao broadly classified the interpolators into two groups - those that in-

troduce new intensity values into the data, for example TRI, and those that

do not – e.g. NNI and PVI. For the noisy synthetic data, where there are

random fluctuations in intensity values of neighbouring voxels, NNI will some-

times result in the correct intensity value and sometimes not. However, TRI

will almost never result in the correct value as, unless the mapping hits a voxel

exactly, the returned intensity will be some weighted average of the intensities

in the neighbourhood.

This is possibly why the NMI metric for the NNI result was higher than the

Discussion 141

TRI result when we used noisy data. However, this does not necessarily mean

that NNI is inherently better in all circumstances – the remaining synthetic

data sets showed significant aliasing artifacts when using NNI.

The choice of interpolator for non-rigid medical image registration depends

not only on the image data itself – whether noisy, inherently structured or

unstructured, etc. – but also on the method used to perform the registration.

In all cases the limitations of MI as a similarity measure need to be considered.

5.3 How does the choice of the RBF affect each warp

evaluation technique?

We chose to use two RBFs in the synthetic data experiments so that we could

see how the different warp evaluation techniques behave with a more complex

RBF than the Euclidean distance φ(r) = r that is the theoretically correct

choice for a TPS in three dimensions [138, p. 195].

Figure 5.1: Ratios of average warp evaluation time, φ(r) = r2 log r : φ(r) = r,

for each technique.

Discussion 142

Figure 5.1 shows the ratio of warping times – the φ(r) = r2 log r time divided

by the φ(r) = r time for the same data – for each of the five warp evaluation

techniques. The software brute force and grid based techniques take more than

twice as long to execute with the more complex RBF while the software “Fast

RBF” technique shows a much reduced difference and the two GPU based

implementations appear unaffected – the choice of RBF makes no difference to

average run time.

For the software based implementations – the first three bars on the chart –

we can postulate that the reduction in differential we see for the optimised

techniques might be because there are fewer RBF evaluations occurring and so

the time taken for RBF calculations forms a smaller percentage of the overall

run time and has less effect on the total.

However, for the GPU based brute force technique, we cannot justify the

same argument. As far as the algorithm is concerned, the time spent evaluating

the RBF is a significant part of the total time because it is inside the main exe-

cution loop as shown in Algorithm 2 in Section 3.11. The explanation probably

lies with the parallel nature of the GPU implementation. As each 256 × 256

voxel image slice is rendered, the graphics card is presented with 65536 TPS

evaluations which it can perform in parallel using – in these experiments1 – 48

individual fragment processors shared between 512 simultaneous pixel threads.

In [170], Trancoso and Charalambous present a study which aims to identify

the best ways to exploit the possible gains from GPU based techniques. They

concluded that the following three items are necessary to achieve a significant

performance increase on GPU versus CPU based algorithms :

• Pass vector data to the graphics card reformatted as a 2D array.

• Use large arrays of data to minimise data transfer to/from the GPU.
1ATI Radeon X1900XT PCI-E 512Mb DDR.

Discussion 143

• Perform as many operations as possible on the GPU.

In the GPU based warp evaluation techniques – the brute force and “Fast

RBF” implementations – we have followed these guidelines, for example by

reformatting the landmark positions and matching TPS coefficients so that they

can be addressed as 2D textures. We also push as much processing as possible

onto the GPU, the main exception being the anterpolation stage of the “Fast

RBF” technique, which must remain CPU based due to current limitations of

the graphics card2.

Parallel evaluation of RBF functions has the same practical effect as the

software optimisations – it lessens the proportion of execution time spent in the

RBF function itself. This may be part of the reason why there is no measurable

run time difference between the two RBFs in the GPU based implementations.

Another possible reason is the fact that the GPU code is written in an assembler

language and is highly optimised for vector based operations. This may also

mitigate the effect of the φ(r) = r2 log r RBF on execution time.

5.4 Limitations of the grid-based evaluation

The grid based warp appears to have an upper limit on accuracy, if judged by

the NMI metric against the brute force gold standard. Considering all synthetic

test data sets, the grid based warp showed a maximum accuracy of 94.65±1.60%

with the smallest grid size (approximately 2× 2 voxels). However, in [101], the

authors report 99% MI accuracy when the technique is used with real medical

images.

One possible reason for this discrepancy arises when we consider the un-

expected NMI score using the “Fast RBF” hardware implementation with real

medical image data. Here we obtained a result that was seemingly better than

the brute force software warp, as we discussed in Section 5.1. We discovered
2Scatter versus gather [121].

Discussion 144

that it can be difficult to assess the accuracy of image registration using a MI

based metric unless using synthetic data with known ground truth.

Due to these difficulties, the tests of the grid-based method had to focus

more on accuracy than run time performance. We already knew from the

brute force GPU based warp evaluation that the reduced floating point preci-

sion compared to a CPU based technique could cause degradation in accuracy.

Therefore, we decided to implement the TPS evaluations of the grid nodes in

software, using the same double precision routines we used for the brute force

technique. In doing this, any differences in accuracy must be due to some other

factor than lack of numerical precision.

Looking at Figure 4.6b in Section 4.1.3, it appears that the grid based warp

evaluation reaches a plateau in terms of accuracy at a grid size of 63 rows by 63

columns. In the 256× 256 voxel 2D slices, this places the grid nodes such that

they cover exactly 4 × 4 voxels. Coarser grids give increasingly less accurate

results.

Although it is difficult to find an explanation of this 4 × 4 voxel accuracy

plateau in theoretical terms, we can at least observe that this was a consistent

feature of all of the synthetic data tests, across all types of test data and with

both RBFs. This is an area which requires further study.

5.5 Behaviour of the “Fast RBF” technique with

varying H

Figure 4.8 in Section 4.1.4 and Figure 4.10 in Section 4.1.5 both show how

the warp accuracy – based on the NMI score – varies with different values of

the parameter H, which controls the “Fast RBF” grid resolution. Here we

noted that there is an apparent decline in accuracy around 0.045 < H < 0.095,

particularly for φ(r) = r2 log r.

Discussion 145

In [101], Livne and Wright give specific details of accuracy and complexity

for a number of smooth RBFs, which makes it theoretically possible to calculate

an optimal value of H in terms of accuracy. However, the kernels we use –

φ(r) = r and φ(r) = r2 log r – are only piecewise smooth and are non-decaying

functions, so we cannot make the same calculation. This makes it currently

unwise to attempt to explain these observed anomalies without further work in

this area.

5.6 Behaviour of the “Fast RBF” technique with

varying number of landmarks

Another observation concerning the “Fast RBF” technique, which we high-

lighted in Section 4.1.6 was the presence of ‘spikes’ in the run times of both the

software and hardware implementations when we varied the number of land-

marks. This was most noticeable for coarser grid resolutions (H > 0.055), as

we can see in Figures 4.17 and 4.20.

It is possible that these spikes are random fluctuations in run time, caused

by background processes running on the CPU, which are only visible when the

time scale on the y axis covers a short period. However, although the spikes

appear often in the 1.5 second range of Figure 4.17, they do not appear with

similar frequency in the 1.5 second range of Figure 4.18 or the 0.75 second range

of Figure 4.19. If the spikes are caused by sporadic background activity, then

by running this set of tests multiple times and plotting the average results, we

would expect to see the effect of any random fluctuations smoothing out.

Figure 5.2 shows averaged results from three test runs, still showing anoma-

lies – some of which coincide exactly in the three runs.

It is worth noting that, in all of the other run time measurements against

varying numbers of landmarks, we have not encountered this type of ‘noisy’

Discussion 146

Figure 5.2: Average effect of the number of landmarks on run time of the “Fast

RBF” software implementation – H = 0.065 . . . 0.105.

Figure 5.3: Effect of the number of landmarks on valid Y nodes in the “Fast

RBF” implementations – H = 0.065 . . . 0.105.

Discussion 147

response – even at shorter time scales, and have not needed to perform multiple

runs to obtain averaged results. This effect appears to be present only with the

“Fast RBF” evaluations and is most significant where H > 0.055.

In Section 4.1.4, we noted that the run time of the “Fast RBF” algorithm

is influenced by the number of nodes in the grid Y which have non-zero values

of Λ(YJ) following the anterpolation stage. This in turn is determined by the

coarseness of the grid – the parameter H – and the density of the landmarks.

If more than eight landmarks fall within the same grid cell, there will be a

reduction in the number of TPS evaluations needed, but if less than eight fall

within a cell, the number will increase.

To produce the sets of landmarks for the tests in Section 4.1.6, we selected

n landmarks at random from a larger set where n = 10, 20, 30, . . . , 500. As

a result, we cannot predict or control the spatial distribution of landmarks in

each data set. In fact, it would have been wrong to do so. However, we can

analyse the landmark sets to record, for each set, the number of ‘valid’ nodes

created in the grid Y for each value of H.

Figure 5.3 shows this information for the range of H values in Figure 5.2.

The chart shows that increasing the number of landmarks may sometimes in-

crease and sometimes decrease the number of valid Y nodes, which will influence

the overall warp execution time in a similar manner.

To see how the variation in the number of Y grid nodes influences the

observed run times, we can correlate this information separately for each value

of H to see if it contributes to the spikiness of the run times in Figure 5.2.

Figure 5.4 shows the correlation3 between the observed run times with the

number of landmarks (light pink bars) and the number of valid Y nodes (dark

blue bars). The chart shows that there is a strong correlation between the run

time and the number of valid Y nodes as well as between run time and the
3For this chart we used Kendall’s tau rank correlation coefficient.

Discussion 148

Figure 5.4: Correlations between valid Y nodes and landmark numbers with

time in the “Fast RBF” implementations – H = 0.065 . . . 0.105.

number of landmarks, which is what we expect. However there is no statistical

evidence that the number of Y nodes has a stronger influence on observed run

times.

Chapter 6

Conclusions and future work

6.1 Conclusions

We conclude the work presented in this thesis by reiterating the questions posed

in Section 2.6.1 :

How much can we optimise the run time of an RBF based warp

evaluation?

The experimental tests have indicated that the “Fast RBF” warp evaluation

techniques are more accurate than the grid-based method of Levin et al. with

the synthetic test data and can produce results which are very close to the brute

force warp evaluation when measured by NMI.

Faster run times will always compromise warping accuracy. It is not possible

to give a ‘fastest’ figure for warp time unless we first decide an acceptable level

of accuracy for the particular application. As an example, we might assume

that a warp that is 90% as accurate as the brute force result is acceptable and

we could note the following1.

By using the “Fast RBF” software implementation on 2563 data and com-

paring with the brute force evaluation, we reduced the execution time for
1All results reported are averages across all synthetic test data.

149

Conclusions and future work 150

φ(r) = r from 332 seconds to 13 seconds (using H = 0.055) while retaining

> 90% accuracy compared to the brute force result.

Using the hardware “Fast RBF” implementation on the same data, we

achieved an execution time of 0.81 seconds (using H = 0.035) while retaining

> 80% accuracy. This represents a 400-fold improvement in warp evaluation

time.

For φ(r) = r2 log r with the “Fast RBF” software implementation, the exe-

cution time was reduced from 790 seconds to 12 seconds (using H = 0.105). The

hardware “Fast RBF” implementation reduced execution time to 0.5 seconds,

nearly 1600 times faster than the brute force method.

What effect do such optimisations have on warping accuracy?

The results of the “Fast RBF” software implementation implied that warping

accuracy of > 98.8% is achievable (compared to the brute force warp), with

an execution time of 46 seconds for φ(r) = r with H = 0.025 – a seven-fold

improvement in run time. For φ(r) = r2 log r, again with H = 0.025, run time

was 71 seconds – an 11-fold improvement.

However, although warping time decreased monotonically with increasing

H, the associated accuracy did not follow a monotonic pattern, particularly for

φ(r) = r2 log r – see Figures 4.8 and 4.10. This makes it difficult to balance

accuracy and time, although – as we mentioned in Section 3.4 – φ(r) = r2 log r

is not optimal as an energy minimising function for a second order energy

potential in three dimensions and is only C1 continuous in the origin.

The hardware implementation of the “Fast RBF” technique displayed sim-

ilar characteristics to its software counterpart. However, the best possible ac-

curacy appeared to be capped at just under 93% of the brute force evaluation.

We showed, using a GPU implementation of the brute force technique, that

this limitation is likely to be due to the reduced floating point precision used

Conclusions and future work 151

for GPU calculations.

How do these optimised techniques behave under different inputs?

For the smaller values of H used in these tests (H = 0.015 . . . 0.055), the run

time of the “Fast RBF” warp evaluation displayed a linear relationship with

the number of landmarks defined.

However, for larger values of H (H = 0.065 . . . 0.105), the run time showed

some spikes when plotted against the number of landmarks. This pattern ap-

peared for the same values of H in the software and hardware implementations

and was not reduced by repeating runs and plotting average times.

Are the optimised methods accurate and/or fast enough for AR ap-

plications?

In an intraoperative situation, the time to perform a non-rigid warp evaluation

should not be so long that the operation itself is compromised or the patient

(or surgeon) is adversely affected by any delay.

The absolute time will inevitably be dependent on the nature of the opera-

tion, although timescales measured in a few minutes or – better – a few seconds

would intuitively appear satisfactory.

Balancing speed with accuracy is a necessary compromise and one on which

it is not possible to be dogmatic. In the tests with real CT and MRI data, each

of 2563 voxels, we achieved visually acceptable results using the hardware “Fast

RBF” technique with a warp evaluation time of just over 0.6 seconds. From

the results of tests with the software “Fast RBF” technique using synthetic

data, we can infer an improved registration accuracy (> 99%) in less than 50

seconds for data sets of this size. These timescales are within a range suitable

for intraoperative applications.

Conclusions and future work 152

6.2 Summary of contributions

This thesis has made the following contributions :

1. Extended the “Fast RBF” evaluation formulation introduced by Livne

and Wright to three dimensions and applied it to mono-modal synthetic

data and multi-modal medical image data.

2. Developed a software implementation of the “Fast RBF” algorithm and

demonstrated its speed and accuracy using synthetic data and real medical

image data.

3. Developed a hardware implementation of the “Fast RBF” algorithm and

demonstrated its speed and accuracy using synthetic data and real medical

image data.

4. Demonstrated the ability to balance speed and accuracy in the “Fast

RBF” technique by adjusting a single run time parameter.

5. Demonstrated the execution time behaviour of the “Fast RBF” technique

when supplied with an increasing number of inputs.

6. Demonstrated the importance of appropriate design of synthetic test data

when assessing the accuracy of optimised warp evaluation techniques.

6.3 Future research

This work has shown that the techniques to accelerate evaluation of RBF based

warping functions have potential for non-rigid medical image registration. A

number of areas for future research have been identified in the previous chapter.

These are as follows :

• In the “Fast RBF” method, we found that it was not straightforward to

determine the optimal value of H for a piecewise smooth non-decaying

Conclusions and future work 153

RBF. Further work which examines the behaviour of these, and other,

basis functions would be useful to develop this acceleration technique.

• With larger values of H, we noted that the run time of the “Fast RBF”

warp evaluation did not vary smoothly with increasing numbers of land-

marks. Suspicions that the spikes in run time were due to landmark

distribution rather than quantity could not be statistically shown. More

investigation of the effects of varying inputs to these methods is required

to gain an understanding of the optimal conditions for their application.

• Test results showed an apparent ceiling on registration accuracy for the

grid based warp, which we were not able to explain. This area requires

further study.

• The fastest warping times were achieved using GPU based implemen-

tations but were limited in accuracy due to hardware restrictions. The

development and application of efficient techniques for GPU based double

precision computation would mitigate this effect.

• We have demonstrated that appropriate design of synthetic test data –

which takes into account the warping technique, the similarity metric and

the target application – can make it easier to reliably compare results from

different warping methods. This idea could be extended to other applica-

tion areas and to different classes of non-rigid registration techniques, for

example parametric methods using B-splines or RBFs with local support,

or the various non-parametric methods described in Section 2.3.6.

Appendix A

Software design

A.1 Experimental software design

Figure A.1 shows a screenshot of the experimental software developed to com-

pare warping speed and quality using different implementations.

The application is written in C++ using Microsoft Visual Studio, MFC and

DirectX. The top left quadrant shows a 2D slice through the source data set and

the top right quadrant shows a 2D slice through the target data set. The lower

left quadrant allows us to preview a grid-based warp of a single data slice. The

control panel in the lower right allows the user to scroll through these 2D views

and to select which plane is currently showing. Figure A.2 shows an enlarged

representation of the control panel, with the controls used for scrolling through

source and target data, removing landmarks, selecting warping algorithm and

supplying run-time parameters and options.

A.2 Manual landmark identification

The top two views in figure A.1 are used to identify matching landmarks in the

two data sets. The relevant 2D slices are selected in the left and right quadrants

and the user places a landmark by clicking with the left mouse button on either

154

Software design 155

Figure A.1: Screenshot of 3DWarpDX, the experimental software

image. A matching point is automatically placed on the other image and each

point may be moved to the ideal position independently by click/drag with the

mouse.

To assist in identification of matching points, as the mouse moves near a

point, it is automatically highlighted with a green border, together with its cor-

responding partner in the other image. Clicking once on an existing landmark

will highlight the pair of points in red so that the user can delete the pair if

necessary using the button on the control panel. Figure A.3 shows a portion of

the application display showing the landmark matching process.

Once all landmark points have been placed, the set of points may be saved

to a file via an option on the File menu. This allows repeat runs with the same

data without the need to re-place landmarks.

Software design 156

Figure A.2: The experimental software control panel

Figure A.3: A screenshot section showing matching landmark points on source

and target images

Appendix B

Full experimental results

The full experimental results for the warp evaluation tests using synthetic test

data are presented in the following sections. All tests used back-mapping and

all times are given in seconds. Unless otherwise shown, separate tables are given

for different interpolation options.

B.1 Results for φ(r) = r

B.1.1 Regular linear gradient synthetic test data

Brute force warp evaluation - software implementation

The gold standard software results :

Interp. TPS Time Warp Time MS MRSD MI MMI NMI CC CM

TRI 2.349523 331.373566 20.052744 15404513 2.615712 -1.497450 1.717397 0.998777 0.907467

NNI 2.375349 327.192413 24.619551 13742805 3.654536 -1.512251 1.585659 0.998475 0.756415

157

Full experimental results 158

Brute force warp evaluation - hardware implementation

The following tests used tri-linear interpolation :

TPS Time Warp Time MS MRSD MI MMI NMI CC CM

2.323861 12.887721 126.865898 8807569 3.402723 -1.433044 1.622725 0.991976 0.514413

Grid based warp evaluation

The following tests used tri-linear interpolation :

Grid TPS Time Warp Time MS MRSD MI MMI NMI CC CM

138 2.380048 193.918043 60.263374 11865201 3.311904 -1.475847 1.621600 0.996280 0.576432

125 2.383679 157.723965 60.202953 11866857 2.989006 -1.551790 1.621512 0.996283 0.576532

113 2.354627 129.345930 60.290417 11866263 3.159882 -1.546677 1.621508 0.996280 0.576514

100 2.365657 101.633105 60.217644 11866706 3.681778 -1.526102 1.621500 0.996283 0.576530

88 2.409841 79.466496 60.256607 11867658 3.502945 -1.497885 1.621495 0.996278 0.576599

75 2.353977 58.329029 60.244633 11867819 2.241484 -1.587103 1.621304 0.996281 0.576652

63 2.344851 41.957636 60.220158 11869562 2.423157 -1.504426 1.621220 0.996283 0.576785

50 2.356552 27.305252 60.257168 11872096 2.793593 -1.488383 1.620615 0.996281 0.577060

38 2.360429 16.825287 60.300396 11875918 3.316882 -1.501494 1.620045 0.996277 0.577428

25 2.351770 8.729403 60.406940 11893509 3.142670 -1.440678 1.617260 0.996275 0.579137

13 2.357576 4.262032 61.750652 11962917 3.245350 -1.522124 1.597898 0.996186 0.588755

“Fast RBF” warp evaluation - software implementation

The following tests used tri-linear interpolation :

H TPS Time Warp Time MS MRSD MI MMI NMI CC CM

0.015 2.372517 494.232544 20.250599 15392330 2.341957 -1.499296 1.715465 0.998778 0.906725

0.025 2.361302 45.793739 20.750439 15344198 4.713700 -1.504982 1.706122 0.998748 0.902317

0.035 2.354435 22.560955 21.696177 15161427 3.718278 -1.493454 1.679303 0.998688 0.887105

0.045 2.334354 15.864787 23.132448 14950712 3.750756 -1.557090 1.653506 0.998602 0.869009

0.055 2.332495 13.103786 25.961502 14536341 4.436656 -1.555585 1.620976 0.998417 0.831073

0.065 2.310550 12.063823 29.994543 14448825 4.212432 -1.526293 1.602607 0.998176 0.827166

0.075 2.310906 11.680119 36.780121 12810417 3.890687 -1.553591 1.529716 0.997741 0.689067

0.085 2.313205 11.694855 41.057610 13368754 3.384850 -1.613864 1.532190 0.997481 0.749611

0.095 2.310031 11.462649 46.928150 12941531 4.650326 -1.520300 1.506749 0.997110 0.712090

0.105 2.309155 11.411191 45.816689 12917741 3.892295 -1.497397 1.506662 0.997174 0.707015

Full experimental results 159

The following tests used nearest neighbour interpolation :

H TPS Time Warp Time MS MRSD MI MMI NMI CC CM

0.015 2.340851 489.968811 24.656397 13741035 3.754997 -1.511065 1.585530 0.998474 0.756309

0.025 2.354538 42.154884 24.909294 13736900 3.792902 -1.592857 1.585054 0.998459 0.756031

0.035 2.350775 19.281717 25.590912 13716107 4.258894 -1.574508 1.582756 0.998417 0.754880

0.045 2.335472 12.399343 26.822565 13685396 4.537364 -1.534755 1.579619 0.998338 0.753082

0.055 2.333610 9.638347 29.968922 13635292 4.125027 -1.582356 1.576479 0.998143 0.749971

0.065 2.340024 8.598971 34.354515 13572623 3.235048 -1.658665 1.568091 0.997871 0.746223

0.075 2.337739 8.178324 42.603157 13060962 4.438252 -1.508802 1.536598 0.997351 0.717940

0.085 2.327874 8.070889 47.260742 13239596 3.969659 -1.512022 1.535432 0.997071 0.727345

0.095 2.334364 7.987331 55.369068 13042727 3.214167 -1.605390 1.520115 0.996567 0.715885

0.105 2.340537 7.930209 55.297810 13017904 2.810020 -1.604648 1.518683 0.996574 0.713297

“Fast RBF” warp evaluation - hardware implementation

The following tests used tri-linear interpolation :

H TPS Time Warp Time MS MRSD MI MMI NMI CC CM

0.015 2.316180 2.749139 127.144791 8810329 2.900402 -1.449952 1.620864 0.991959 0.514448

0.025 2.310702 0.954813 128.533966 8806998 2.599971 -1.491014 1.618305 0.991870 0.514394

0.035 2.308746 0.680023 131.307587 8807838 3.328390 -1.429281 1.606666 0.991689 0.514580

0.045 2.308443 0.568055 129.673080 8844587 3.810427 -1.355180 1.595275 0.991796 0.514676

0.055 2.317935 0.528603 145.817307 8775759 4.429440 -1.425954 1.592312 0.990772 0.514385

0.065 2.327933 0.484454 139.112549 8836957 3.797102 -1.448963 1.566772 0.991206 0.514640

0.075 2.306459 0.473183 111.539719 9540854 3.379082 -1.439521 1.506854 0.992966 0.526206

0.085 2.299965 0.457530 154.263123 9082926 3.572644 -1.361175 1.503426 0.990259 0.520459

0.095 2.306144 0.464069 154.389313 9261439 3.175537 -1.474586 1.481622 0.990260 0.523539

0.105 2.298075 0.455741 155.318146 9178681 3.020954 -1.359375 1.479090 0.990190 0.520672

B.1.2 Irregular linear gradient synthetic test data

Brute force warp evaluation - software implementation

The gold standard software results :

Interp. TPS Time Warp Time MS MRSD MI MMI NMI CC CM

TRI 2.362640 333.835164 46.958843 13794750 1.952052 -1.329697 1.553860 0.997639 0.806856

NNI 2.465949 327.035370 55.217781 13080376 2.567493 -1.360311 1.492595 0.997175 0.720960

Full experimental results 160

Brute force warp evaluation - hardware implementation

The following tests used tri-linear interpolation :

TPS Time Warp Time MS MRSD MI MMI NMI CC CM

2.357186 13.285579 310.795227 8950981 1.735395 -1.277285 1.493154 0.983875 0.517697

Grid based warp evaluation

The following tests used tri-linear interpolation :

Grid TPS Time Warp Time MS MRSD MI MMI NMI CC CM

138 2.369475 193.907469 142.972336 10925051 2.221509 -1.306882 1.487330 0.992655 0.545123

125 2.390018 157.730304 142.904602 10926332 2.051779 -1.367469 1.486984 0.992655 0.545206

113 2.353006 129.344308 142.995117 10925291 2.235125 -1.354113 1.487235 0.992651 0.545130

100 2.365638 101.633087 142.918137 10926322 2.476452 -1.334867 1.487073 0.992658 0.545201

88 2.389846 79.446502 142.955811 10927255 2.489680 -1.383748 1.487182 0.992654 0.545240

75 2.351630 58.326682 142.935791 10926476 1.876327 -1.415038 1.487041 0.992655 0.545245

63 2.352625 41.965410 142.932480 10926639 1.982229 -1.320202 1.486966 0.992656 0.545249

50 2.331013 27.279713 142.981262 10927631 2.589956 -1.315126 1.486464 0.992651 0.545382

38 2.352016 16.816875 143.080414 10928253 2.836976 -1.330971 1.486401 0.992646 0.545437

25 2.360546 8.738179 143.343079 10933353 2.683096 -1.368461 1.484525 0.992631 0.546075

13 2.369273 4.273729 147.050308 10962588 2.510492 -1.335861 1.473716 0.992448 0.550870

“Fast RBF” warp evaluation - software implementation

The following tests used tri-linear interpolation :

H TPS Time Warp Time MS MRSD MI MMI NMI CC CM

0.015 2.355670 493.254517 47.402126 13786709 2.945127 -1.329987 1.553117 0.997616 0.806511

0.025 2.354691 45.585709 48.576015 13757342 4.102522 -1.336539 1.547287 0.997555 0.803787

0.035 2.347727 22.513794 51.062649 13614777 2.923309 -1.338571 1.527772 0.997435 0.790770

0.045 2.325602 15.831116 54.358501 13492166 3.628732 -1.377168 1.513538 0.997264 0.780146

0.055 2.334067 13.088737 59.687492 13206733 3.192368 -1.364025 1.489043 0.996992 0.750933

0.065 2.320339 12.043397 68.763916 13073261 3.251038 -1.347961 1.472544 0.996528 0.742959

0.075 2.330864 11.634527 92.168167 12019065 2.174287 -1.336613 1.430672 0.995309 0.653887

0.085 2.315074 11.467153 103.320618 12388760 2.832463 -1.417168 1.430347 0.994738 0.689494

0.095 2.328668 11.412859 110.595596 12267371 3.292900 -1.339128 1.417182 0.994356 0.680985

0.105 2.336036 11.696194 112.290146 12253011 2.412324 -1.334953 1.417139 0.994269 0.678255

Full experimental results 161

The following tests used nearest neighbour interpolation :

H TPS Time Warp Time MS MRSD MI MMI NMI CC CM

0.015 2.363455 495.023987 55.261024 13080383 2.958348 -1.382144 1.492578 0.997173 0.720956

0.025 2.345081 42.108280 55.772667 13078554 3.634188 -1.426638 1.492121 0.997145 0.720854

0.035 2.350495 19.095144 57.432816 13068163 3.192837 -1.416303 1.490235 0.997063 0.720464

0.045 2.353552 12.393270 60.400295 13049061 2.975712 -1.395801 1.487660 0.996908 0.719446

0.055 2.350919 9.648543 65.677254 13007497 2.826253 -1.405918 1.483400 0.996638 0.717227

0.065 2.359740 8.597961 75.700897 12954406 3.050709 -1.477128 1.475900 0.996121 0.714107

0.075 2.358448 8.190183 102.597382 12614053 3.453309 -1.359150 1.454823 0.994720 0.696125

0.085 2.347873 8.062902 115.308044 12717312 2.831404 -1.374779 1.450671 0.994072 0.700919

0.095 2.350632 7.978933 124.680595 12597363 2.584180 -1.413147 1.440587 0.993586 0.694487

0.105 2.355388 8.106890 128.832245 12590614 2.767558 -1.420338 1.440250 0.993375 0.692853

“Fast RBF” warp evaluation - hardware implementation

The following tests used tri-linear interpolation :

H TPS Time Warp Time MS MRSD MI MMI NMI CC CM

0.015 2.341194 3.535046 310.817749 8955438 2.531791 -1.345747 1.492156 0.983874 0.517765

0.025 2.335294 0.973264 313.151642 8953676 3.386749 -1.340690 1.490224 0.983747 0.517911

0.035 2.359863 1.238837 320.747192 8940396 3.659957 -1.291791 1.483191 0.983336 0.518253

0.045 2.342167 0.580914 315.168762 8977865 3.273073 -1.296363 1.476133 0.983636 0.518730

0.055 2.338594 0.519875 353.803375 8906345 4.347034 -1.335528 1.469845 0.981605 0.517808

0.065 2.348237 0.528052 331.779175 8968432 3.739660 -1.345751 1.450174 0.982768 0.518780

0.075 2.344851 0.479194 263.593414 9515538 3.184233 -1.285622 1.417063 0.986358 0.529092

0.085 2.353009 0.484377 366.985352 9071795 3.876471 -1.300467 1.410164 0.980906 0.521923

0.095 2.356097 0.472069 359.929688 9251860 3.593153 -1.345021 1.392145 0.981301 0.525481

0.105 2.346526 0.475835 370.394775 9210612 2.285831 -1.274955 1.392510 0.980757 0.523799

B.1.3 Checkered cube with random noise synthetic test data

Brute force warp evaluation - software implementation

The gold standard software results :

Interp. TPS Time Warp Time MS MRSD MI MMI NMI CC CM

TRI 2.360610 331.353333 127.108925 9328357 2.472743 -1.280557 1.264702 0.991891 0.534591

NNI 2.354361 327.078644 109.370583 9753855 3.267127 -1.339762 1.277094 0.992986 0.552193

Full experimental results 162

Brute force warp evaluation - hardware implementation

The following tests used tri-linear interpolation :

TPS Time Warp Time MS MRSD MI MMI NMI CC CM

2.343023 12.905877 404.136292 8841003 2.933362 -1.146813 1.199441 0.973597 0.518580

Grid based warp evaluation

The following tests used tri-linear interpolation :

Grid TPS Time Warp Time MS MRSD MI MMI NMI CC CM

138 2.373630 193.911624 253.761520 8972887 2.112984 -1.231810 1.217234 0.983571 0.524191

125 2.371551 157.711837 253.710587 8972546 2.842460 -1.181489 1.217262 0.983572 0.524167

113 2.361046 129.352349 253.781006 8972574 2.471511 -1.175042 1.217242 0.983570 0.524171

100 2.350702 101.618150 253.721634 8972541 3.594377 -1.199043 1.217252 0.983569 0.524166

88 2.428383 79.485039 253.753113 8972852 2.219838 -1.216137 1.217265 0.983573 0.524187

75 2.359702 58.334754 253.742905 8972971 2.674824 -1.242370 1.217247 0.983572 0.524195

63 2.380901 41.993686 253.740753 8972511 2.820373 -1.178613 1.217268 0.983572 0.524166

50 2.354081 27.302781 253.771622 8972891 2.311805 -1.248085 1.217216 0.983573 0.524202

38 2.373153 16.838011 253.858124 8972766 2.708368 -1.183878 1.217175 0.983562 0.524191

25 2.360703 8.738336 254.101807 8971714 1.806219 -1.169294 1.217053 0.983548 0.524130

13 2.380582 4.285038 257.383850 8969715 3.256285 -1.174290 1.215858 0.983336 0.524108

“Fast RBF” warp evaluation - software implementation

The following tests used tri-linear interpolation :

H TPS Time Warp Time MS MRSD MI MMI NMI CC CM

0.015 2.358737 492.318298 127.564560 9323592 3.329511 -1.279526 1.264369 0.991862 0.534309

0.025 2.352375 45.603939 128.815781 9312827 4.464308 -1.302928 1.263534 0.991785 0.533693

0.035 2.356208 22.562088 131.793640 9253599 3.118101 -1.285656 1.261659 0.991591 0.530663

0.045 2.321992 15.858770 135.391785 9245553 4.282638 -1.337402 1.259585 0.991354 0.530444

0.055 2.322564 13.107615 141.426224 9150609 4.436867 -1.323858 1.256230 0.990950 0.527322

0.065 2.363482 13.906859 151.073410 9130793 3.700143 -1.281776 1.251453 0.990313 0.526630

0.075 2.321589 11.681573 181.139755 9032637 4.125660 -1.285818 1.237437 0.988334 0.524030

0.085 2.323447 11.523153 194.174454 9030852 3.566306 -1.306761 1.232656 0.987472 0.524395

0.095 2.330523 11.462830 199.358536 9181633 4.108850 -1.259705 1.232165 0.987130 0.530147

0.105 2.335913 11.428257 202.101257 9096899 4.545603 -1.237642 1.230503 0.986937 0.526740

Full experimental results 163

The following tests used nearest neighbour interpolation :

H TPS Time Warp Time MS MRSD MI MMI NMI CC CM

0.015 2.351057 489.343933 109.467201 9754011 2.912083 -1.334924 1.277042 0.992974 0.552210

0.025 2.364119 42.136120 110.088669 9753780 4.504101 -1.381322 1.276756 0.992937 0.552206

0.035 2.352633 19.097809 112.519196 9754499 4.583532 -1.371448 1.275415 0.992774 0.552303

0.045 2.356896 12.398351 116.166183 9752472 5.068680 -1.325312 1.273669 0.992537 0.552262

0.055 2.354249 9.646543 122.293396 9746678 5.544571 -1.366303 1.271270 0.992138 0.552012

0.065 2.343453 8.778589 134.044540 9738663 2.843383 -1.438701 1.266494 0.991372 0.551778

0.075 2.352368 8.183869 172.136948 9717561 4.045371 -1.308649 1.250988 0.988843 0.551691

0.085 2.351401 8.066149 188.480347 9705649 5.038779 -1.274166 1.245867 0.987763 0.551384

0.095 2.358431 8.011514 199.309021 9697347 4.121992 -1.329991 1.243408 0.987054 0.551198

0.105 2.354373 7.930961 204.160065 9688768 2.699624 -1.355432 1.241451 0.986733 0.551153

“Fast RBF” warp evaluation - hardware implementation

The following tests used tri-linear interpolation :

H TPS Time Warp Time MS MRSD MI MMI NMI CC CM

0.015 2.321894 2.920949 404.172058 8841731 3.140191 -1.150514 1.199446 0.973596 0.518615

0.025 2.329457 0.972872 406.356415 8841521 2.538161 -1.174753 1.199092 0.973448 0.518588

0.035 2.327291 0.709789 412.380920 8843791 3.847987 -1.145706 1.197943 0.973046 0.518738

0.045 2.318076 0.577714 407.570831 8845694 4.236089 -1.132591 1.197927 0.973363 0.518788

0.055 2.450615 0.548590 439.383362 8836829 4.667472 -1.174438 1.194751 0.971247 0.518458

0.065 2.330112 0.498233 421.300018 8841151 3.194628 -1.144714 1.194824 0.972438 0.518580

0.075 2.348416 0.465809 360.990021 8871425 4.173345 -1.179090 1.201431 0.976451 0.519817

0.085 2.332604 0.484548 453.833862 8853054 3.739803 -1.127900 1.189925 0.970275 0.519407

0.095 2.327256 0.480071 441.968567 8860152 4.017978 -1.156522 1.191748 0.971059 0.519652

0.105 2.319905 0.472730 451.079407 8863654 1.852111 -1.122772 1.190274 0.970475 0.519948

B.1.4 Non-linear gradient synthetic test data

Brute force warp evaluation - software implementation

The gold standard software results :

Interp. TPS Time Warp Time MS MRSD MI MMI NMI CC CM

TRI 2.385287 332.187354 18.984509 15191091 2.979663 -1.613442 1.687073 0.998653 0.891942

NNI 2.388886 327.102142 23.333511 13659044 2.782177 -1.620051 1.590584 0.998306 0.756170

Full experimental results 164

Brute force warp evaluation - hardware implementation

The following tests used tri-linear interpolation :

TPS Time Warp Time MS MRSD MI MMI NMI CC CM

2.385687 12.241180 127.440834 10288589 2.540931 -1.603371 1.526633 0.990650 0.539291

Grid based warp evaluation

The following tests used tri-linear interpolation :

Grid TPS Time Warp Time MS MRSD MI MMI NMI CC CM

138 2.368914 191.537994 63.703049 14312900 3.117686 -1.595245 1.608523 0.995400 0.811592

125 2.371000 155.340286 63.623184 14313144 3.011660 -1.605253 1.608784 0.995407 0.811705

113 2.364604 126.991302 63.804401 14317154 3.130313 -1.599780 1.609295 0.995395 0.811859

100 2.349782 99.267448 62.749512 14306119 3.322567 -1.649367 1.607947 0.995467 0.811466

88 2.408822 77.056656 63.003998 14304213 3.140551 -1.675840 1.608361 0.995451 0.811188

75 2.358987 55.975052 63.518181 14299948 2.818217 -1.656254 1.607952 0.995415 0.811023

63 2.363864 39.612785 63.527767 14310943 3.451259 -1.715200 1.608522 0.995412 0.811863

50 2.349845 24.948700 63.441753 14301916 2.806097 -1.734497 1.608355 0.995418 0.811077

38 2.368389 14.464858 63.436760 14288486 3.176606 -1.661967 1.606624 0.995421 0.810192

25 2.364611 6.377633 63.351830 14292200 3.482395 -1.602896 1.607036 0.995426 0.810215

13 2.365240 1.904456 64.570175 14069509 2.553038 -1.713190 1.584625 0.995337 0.791500

“Fast RBF” warp evaluation - software implementation

The following tests used tri-linear interpolation :

H TPS Time Warp Time MS MRSD MI MMI NMI CC CM

0.015 2.392447 516.378967 19.162853 15173302 3.027346 -1.613453 1.684616 0.998636 0.890716

0.025 2.392657 48.760342 19.636452 15128372 4.314490 -1.613122 1.677530 0.998606 0.886954

0.035 2.388840 23.685511 20.621742 14917577 3.671751 -1.623797 1.652140 0.998532 0.868632

0.045 2.354849 16.214369 21.944826 14654770 4.810976 -1.673382 1.627286 0.998436 0.845270

0.055 2.363456 13.125979 24.580576 14625595 4.405814 -1.687690 1.621342 0.998245 0.842932

0.065 2.350722 11.947652 28.517147 14245425 4.819124 -1.661632 1.592412 0.997956 0.813181

0.075 2.350084 11.472793 35.221428 12919447 4.279626 -1.683306 1.515273 0.997450 0.708491

0.085 2.359809 11.340197 39.797939 13007606 3.682789 -1.708209 1.507191 0.997121 0.717536

0.095 2.347240 11.266697 44.112141 12742401 4.284968 -1.612157 1.495966 0.996807 0.696640

0.105 2.358863 11.196708 44.347378 12780619 4.589286 -1.598930 1.497191 0.996795 0.692583

Full experimental results 165

The following tests used nearest neighbour interpolation :

H TPS Time Warp Time MS MRSD MI MMI NMI CC CM

0.015 2.385199 508.666870 23.350586 13658494 3.906859 -1.639305 1.590467 0.998303 0.756145

0.025 2.384860 46.344097 23.593439 13657393 4.899445 -1.686209 1.590046 0.998285 0.756042

0.035 2.378093 21.283670 24.284628 13640887 3.971060 -1.699861 1.587380 0.998234 0.755109

0.045 2.383850 13.801839 25.591534 13616203 4.330639 -1.683079 1.583866 0.998138 0.753705

0.055 2.380190 10.721459 28.349133 13611022 4.933847 -1.716749 1.582428 0.997940 0.753548

0.065 2.384235 9.533742 32.782673 13561907 3.893878 -1.817585 1.575967 0.997618 0.750664

0.075 2.385205 9.064716 40.440777 13141791 4.429677 -1.665197 1.540646 0.997044 0.726817

0.085 2.393368 8.934108 45.711411 13154023 4.853023 -1.632482 1.533439 0.996659 0.728212

0.095 2.388659 8.842703 51.109234 13051278 3.471632 -1.738036 1.522600 0.996265 0.724061

0.105 2.388397 8.784272 52.178806 13033287 3.174085 -1.746699 1.521354 0.996189 0.719899

“Fast RBF” warp evaluation - hardware implementation

The following tests used tri-linear interpolation :

H TPS Time Warp Time MS MRSD MI MMI NMI CC CM

0.015 2.402439 2.509266 127.623642 10292962 2.899455 -1.523961 1.525515 0.990640 0.539365

0.025 2.397686 0.893234 128.798645 10279055 4.127316 -1.545227 1.523904 0.990552 0.539041

0.035 2.392185 0.628190 132.398926 10306420 3.445459 -1.495340 1.515387 0.990289 0.538976

0.045 2.393439 0.521233 130.457947 10379257 4.631709 -1.555185 1.510206 0.990432 0.541380

0.055 2.386930 0.469770 146.033814 10116553 4.242591 -1.609260 1.506129 0.989272 0.534536

0.065 2.381622 0.443884 139.756027 10469417 4.190050 -1.580472 1.498649 0.989765 0.544935

0.075 2.385633 0.435474 110.955048 11307137 4.647873 -1.623419 1.469911 0.991893 0.594506

0.085 2.386163 0.428063 157.081131 10913469 4.024036 -1.667765 1.449349 0.988497 0.574804

0.095 2.388269 0.426446 151.667221 10883718 4.596086 -1.573595 1.434190 0.988874 0.576601

0.105 2.381747 0.422145 153.253586 10695861 5.251082 -1.534081 1.430396 0.988752 0.569746

B.2 Results for φ(r) = r2 log r

B.2.1 Regular linear gradient synthetic test data

Brute force warp evaluation - software implementation

The gold standard software results :

Interp. TPS Time Warp Time MS MRSD MI MMI NMI CC CM

TRI 2.375827 790.143372 19.591047 15404284 3.622680 -1.514817 1.716064 0.998809 0.906939

NNI 2.372297 788.178650 23.941166 13796570 3.580482 -1.605565 1.589758 0.998518 0.761724

Full experimental results 166

Brute force warp evaluation - hardware implementation

The following tests used tri-linear interpolation :

TPS Time Warp Time MS MRSD MI MMI NMI CC CM

2.405188 12.908881 126.513718 8802185 3.439864 -1.382141 1.622828 0.991996 0.514177

Grid based warp evaluation

The following tests used tri-linear interpolation :

Grid TPS Time Warp Time MS MRSD MI MMI NMI CC CM

138 2.385447 455.203369 60.381607 11845219 3.002713 -1.496159 1.623742 0.996272 0.574753

125 2.386728 373.404022 60.314842 11846322 2.496008 -1.587173 1.623591 0.996276 0.574872

113 2.382942 305.144806 60.412495 11846704 3.534164 -1.502830 1.623660 0.996272 0.574851

100 2.374989 238.804169 60.316711 11847104 2.875656 -1.480477 1.623635 0.996274 0.574908

88 2.381163 184.890976 60.373615 11848534 3.055329 -1.501650 1.623667 0.996273 0.574990

75 2.379978 134.294662 60.378086 11849277 3.771868 -1.446946 1.623527 0.996276 0.575072

63 2.373719 94.612480 60.309967 11851767 2.502073 -1.534162 1.623527 0.996278 0.575235

50 2.366801 59.717670 60.396671 11856881 2.562256 -1.528095 1.623074 0.996272 0.575641

38 2.382688 34.473492 60.430714 11863019 3.003667 -1.506037 1.622868 0.996271 0.576090

25 2.391750 14.995396 60.527515 11889227 2.743673 -1.552758 1.620659 0.996264 0.578289

13 2.381457 4.174581 62.266518 11990810 3.709186 -1.588241 1.600490 0.996152 0.590605

“Fast RBF” warp evaluation - software implementation

The following tests used tri-linear interpolation :

H TPS Time Warp Time MS MRSD MI MMI NMI CC CM

0.015 2.344045 602.066711 19.692284 15387917 3.939583 -1.517238 1.712259 0.998803 0.905068

0.025 2.354419 69.015884 19.838425 15356157 4.333213 -1.597841 1.706521 0.998804 0.901898

0.035 2.345492 32.029785 22.594452 14983160 3.775148 -1.546317 1.650010 0.998628 0.865550

0.045 2.343558 20.214792 21.896992 14920970 4.458100 -1.540754 1.647742 0.998670 0.861678

0.055 2.337077 14.929594 31.467136 13419141 4.045789 -1.517868 1.555544 0.998077 0.719870

0.065 2.362302 13.981194 80.656013 11635348 4.025596 -1.558883 1.437399 0.995001 0.605083

0.075 2.363714 11.963979 70.185638 11487717 2.694458 -1.481696 1.441217 0.995642 0.604442

0.085 2.476465 11.739137 85.631615 12694484 2.276697 -1.464985 1.481289 0.994717 0.683477

0.095 2.668839 11.630121 45.458427 12938970 4.011122 -1.471309 1.508982 0.997205 0.712905

0.105 2.384763 11.484929 49.323299 12842567 3.744005 -1.474713 1.495371 0.996965 0.702858

Full experimental results 167

The following tests used nearest neighbour interpolation :

H TPS Time Warp Time MS MRSD MI MMI NMI CC CM

0.015 2.372937 595.957153 23.908245 13792304 3.530860 -1.554770 1.589324 0.998520 0.761457

0.025 2.371555 65.640869 23.931543 13789928 4.383592 -1.566025 1.589138 0.998518 0.761282

0.035 2.425696 28.505960 26.233250 13728796 4.260804 -1.531270 1.582035 0.998376 0.757594

0.045 2.398237 16.735376 25.496815 13728405 4.009974 -1.612295 1.582309 0.998420 0.757446

0.055 2.378571 11.433476 35.179676 13425267 3.146307 -1.552704 1.558201 0.997817 0.738808

0.065 2.389989 9.509941 104.604263 11859532 1.798000 -1.437564 1.449587 0.993502 0.651253

0.075 2.379765 8.496383 82.378311 12417840 4.022595 -1.494746 1.474230 0.994882 0.684052

0.085 2.387005 8.264435 114.131332 12694636 3.521001 -1.488588 1.492943 0.992951 0.696219

0.095 2.376403 8.103719 52.041019 13065795 3.640511 -1.547868 1.523785 0.996778 0.720303

0.105 2.386445 8.015146 58.302174 13005439 4.199722 -1.555436 1.514065 0.996391 0.716259

“Fast RBF” warp evaluation - hardware implementation

The following tests used tri-linear interpolation :

H TPS Time Warp Time MS MRSD MI MMI NMI CC CM

0.015 2.380417 3.423604 125.801170 8814619 3.252999 -1.423853 1.618688 0.992040 0.514278

0.025 2.383680 1.006130 123.173553 8825411 4.191911 -1.437921 1.617567 0.992207 0.514228

0.035 2.383836 0.709868 118.279404 8838262 3.534575 -1.387174 1.595130 0.992505 0.514561

0.045 2.404492 0.643678 121.024307 8874266 4.644534 -1.451949 1.595444 0.992336 0.514567

0.055 2.400049 0.528564 95.907524 9108379 3.338026 -1.491821 1.543882 0.993942 0.514499

0.065 2.373239 0.494759 157.433228 9525613 3.821955 -1.375023 1.426205 0.990083 0.524735

0.075 2.451583 0.485487 239.962158 9250055 2.973526 -1.326314 1.414505 0.984807 0.525993

0.085 2.368906 0.547733 140.142471 9466030 2.885578 -1.460139 1.461692 0.991169 0.527771

0.095 2.362838 0.516206 138.284271 9429308 2.642907 -1.489552 1.481499 0.991289 0.527127

0.105 2.370828 0.481717 155.461655 9284591 3.139961 -1.433097 1.468878 0.990191 0.523800

B.2.2 Irregular linear gradient synthetic test data

Brute force warp evaluation - software implementation

The gold standard software results :

Interp. TPS Time Warp Time MS MRSD MI MMI NMI CC CM

TRI 2.355531 789.893372 45.692234 13777435 2.626005 -1.346634 1.550476 0.997703 0.803691

NNI 2.358341 786.234314 53.402924 13117000 2.089005 -1.443807 1.495663 0.997268 0.723957

Full experimental results 168

Brute force warp evaluation - hardware implementation

The following tests used tri-linear interpolation :

TPS Time Warp Time MS MRSD MI MMI NMI CC CM

2.384521 12.903515 310.845947 8944236 2.405372 -1.338776 1.492722 0.983869 0.517436

Grid based warp evaluation

The following tests used tri-linear interpolation :

Grid TPS Time Warp Time MS MRSD MI MMI NMI CC CM

138 2.402756 457.606125 142.395981 10928963 3.038791 -1.390588 1.488394 0.992683 0.545244

125 2.380720 375.784742 142.317261 10930298 2.610419 -1.405167 1.487991 0.992685 0.545359

113 2.380672 307.525478 142.424744 10929716 1.914928 -1.325991 1.488277 0.992678 0.545302

100 2.380142 241.184311 142.315277 10930314 2.714800 -1.313660 1.488147 0.992685 0.545352

88 2.381356 187.272332 142.371811 10931257 2.409353 -1.342560 1.488310 0.992681 0.545403

75 2.397676 136.692338 142.368469 10930533 2.071585 -1.363222 1.488199 0.992683 0.545391

63 2.380746 96.993226 142.305054 10931757 2.572620 -1.344039 1.488184 0.992685 0.545464

50 2.351237 62.068908 142.402878 10933192 2.586279 -1.330451 1.487765 0.992680 0.545635

38 2.368118 36.841610 142.455215 10935145 2.414255 -1.387982 1.488091 0.992677 0.545760

25 2.411717 17.407113 142.655441 10944219 1.728329 -1.371382 1.486881 0.992671 0.546658

13 2.376342 6.550922 146.636505 10996925 1.581688 -1.302394 1.476686 0.992471 0.553101

“Fast RBF” warp evaluation - software implementation

The following tests used tri-linear interpolation :

H TPS Time Warp Time MS MRSD MI MMI NMI CC CM

0.015 2.372944 602.092896 45.952698 13759268 3.562844 -1.343403 1.548132 0.997689 0.802157

0.025 2.382415 69.004898 46.501122 13754542 4.950953 -1.388868 1.546156 0.997662 0.800947

0.035 2.371496 31.984194 53.544243 13369396 3.408283 -1.415595 1.498819 0.997305 0.762078

0.045 2.371935 20.215055 52.073071 13440078 3.788849 -1.326007 1.506174 0.997377 0.769939

0.055 2.365602 14.931692 74.670746 12367490 4.363686 -1.338922 1.442399 0.996215 0.667740

0.065 2.375176 12.844070 206.675400 10832885 3.274747 -1.312763 1.340852 0.989327 0.579054

0.075 2.375260 11.967552 159.174759 11016116 2.280112 -1.310388 1.358444 0.991816 0.587586

0.085 2.383873 11.697344 193.669571 11363091 2.664755 -1.296355 1.368963 0.990040 0.608147

0.095 2.396173 11.536537 109.794098 12217028 3.302600 -1.330764 1.417796 0.994397 0.676216

0.105 2.391925 11.464852 119.313675 12153497 2.836535 -1.319870 1.407698 0.993903 0.670277

Full experimental results 169

The following tests used nearest neighbour interpolation :

H TPS Time Warp Time MS MRSD MI MMI NMI CC CM

0.015 2.359793 597.491638 53.458408 13114209 3.895327 -1.427114 1.495406 0.997268 0.723852

0.025 2.360430 65.499092 53.610725 13112414 3.248831 -1.414110 1.495298 0.997260 0.723674

0.035 2.355102 28.491638 59.822994 13061346 4.186475 -1.413529 1.487615 0.996940 0.721180

0.045 2.356236 16.707981 58.182007 13073527 3.876413 -1.445953 1.489451 0.997025 0.721747

0.055 2.355965 11.592660 79.993469 12830623 2.272686 -1.414155 1.466887 0.995892 0.708103

0.065 2.381390 9.327442 255.120575 11364139 2.667909 -1.258650 1.363840 0.986821 0.630065

0.075 2.388515 8.489008 178.657303 12068893 3.793486 -1.341367 1.399129 0.990784 0.666830

0.085 2.376465 8.258410 237.624268 12024714 2.804293 -1.339037 1.397066 0.987760 0.664005

0.095 2.388066 8.096834 120.683792 12617763 3.407633 -1.406785 1.442868 0.993795 0.697341

0.105 2.390454 8.005185 133.953827 12583690 3.407861 -1.361663 1.435953 0.993109 0.694760

“Fast RBF” warp evaluation - hardware implementation

The following tests used tri-linear interpolation :

H TPS Time Warp Time MS MRSD MI MMI NMI CC CM

0.015 2.394883 2.731065 308.801575 8952572 2.772176 -1.283044 1.490138 0.983978 0.517605

0.025 2.387085 0.951575 302.944275 8967318 3.276702 -1.331702 1.491939 0.984293 0.517849

0.035 2.385026 0.673497 302.031616 9008616 3.348840 -1.312894 1.468353 0.984324 0.518463

0.045 2.355674 0.569640 305.163147 9011390 2.760578 -1.356686 1.472340 0.984164 0.518287

0.055 2.355906 0.507616 261.079224 9225745 2.815356 -1.409003 1.436125 0.986478 0.520362

0.065 2.358438 0.489217 395.764648 9729024 3.807795 -1.280962 1.332126 0.979414 0.538945

0.075 2.360978 0.484206 519.147888 9243836 2.889727 -1.249901 1.335641 0.972920 0.528697

0.085 2.355271 0.459316 356.893982 9594755 2.177010 -1.339064 1.355478 0.981464 0.534249

0.095 2.354124 0.466322 327.832733 9370132 3.064533 -1.362177 1.390857 0.982985 0.527565

0.105 2.359066 0.458180 370.897705 9257209 3.170925 -1.288077 1.381543 0.980723 0.524702

B.2.3 Checkered cube with random noise synthetic test data

Brute force warp evaluation - software implementation

The gold standard software results :

Interp. TPS Time Warp Time MS MRSD MI MMI NMI CC CM

TRI 2.377059 791.614441 126.434341 9288238 2.528866 -1.326850 1.265181 0.991938 0.532105

NNI 2.378087 786.240051 107.826675 9728415 3.369844 -1.327237 1.278012 0.993087 0.550281

Full experimental results 170

Brute force warp evaluation - hardware implementation

The following tests used tri-linear interpolation :

TPS Time Warp Time MS MRSD MI MMI NMI CC CM

2.367751 12.844133 404.496155 8838082 2.391382 -1.181130 1.199271 0.973575 0.518398

Grid based warp evaluation

The following tests used tri-linear interpolation :

Grid TPS Time Warp Time MS MRSD MI MMI NMI CC CM

138 2.385476 457.588845 253.534576 8972895 2.782491 -1.208384 1.217566 0.983585 0.524219

125 2.367999 375.772021 253.471634 8972484 2.839912 -1.239212 1.217586 0.983591 0.524189

113 2.393205 307.538011 253.549088 8972289 2.275991 -1.178750 1.217568 0.983585 0.524177

100 2.356431 241.160599 253.470413 8972449 2.037857 -1.244752 1.217579 0.983591 0.524188

88 2.372878 187.263854 253.510391 8973014 3.186147 -1.186131 1.217566 0.983588 0.524224

75 2.365125 136.659787 253.515289 8973226 2.666205 -1.172888 1.217554 0.983589 0.524237

63 2.383653 96.996133 253.461533 8972769 2.782495 -1.196638 1.217573 0.983588 0.524209

50 2.350951 62.068622 253.524673 8973575 1.778622 -1.165453 1.217547 0.983589 0.524260

38 2.379196 36.852687 253.580750 8973686 2.158936 -1.207407 1.217545 0.983584 0.524265

25 2.411153 17.406549 253.763977 8974741 2.604774 -1.214940 1.217436 0.983573 0.524338

13 2.367457 6.542038 257.349487 8977051 2.623657 -1.183350 1.216137 0.983337 0.524577

“Fast RBF” warp evaluation - software implementation

The following tests used tri-linear interpolation :

H TPS Time Warp Time MS MRSD MI MMI NMI CC CM

0.015 2.367152 600.830017 126.779449 9270397 4.425428 -1.294679 1.264923 0.991914 0.531147

0.025 2.373552 69.159927 127.306480 9279830 5.190026 -1.335783 1.264482 0.991880 0.531653

0.035 2.369162 32.016685 136.052109 9186411 3.183922 -1.370325 1.258406 0.991312 0.528443

0.045 2.366116 20.233414 133.598053 9219924 4.916340 -1.336546 1.260348 0.991470 0.529360

0.055 2.375819 14.933147 160.831818 9037576 4.230587 -1.254398 1.246714 0.989673 0.523619

0.065 2.375437 12.839722 308.762238 8908914 4.050317 -1.203561 1.204539 0.979905 0.520051

0.075 2.373691 11.967468 254.547470 8971173 2.901217 -1.169971 1.218434 0.983491 0.523113

0.085 2.380296 11.708549 293.614288 8985366 2.218701 -1.179145 1.209372 0.980951 0.523708

0.095 2.386113 11.549995 199.253464 9137660 4.462887 -1.216400 1.231864 0.987126 0.528064

0.105 2.393954 11.648142 209.400269 9072345 3.054528 -1.232129 1.228652 0.986454 0.525674

Full experimental results 171

The following tests used nearest neighbour interpolation :

H TPS Time Warp Time MS MRSD MI MMI NMI CC CM

0.015 2.387748 595.990723 107.968285 9728805 4.950707 -1.369074 1.277874 0.993074 0.550312

0.025 2.383124 65.668137 108.268532 9728050 3.346894 -1.441579 1.277686 0.993055 0.550267

0.035 2.391459 28.501915 117.032486 9728187 3.673051 -1.365876 1.273033 0.992476 0.550465

0.045 2.361383 16.729244 114.618584 9727557 4.222414 -1.340421 1.274299 0.992636 0.550381

0.055 2.376700 11.417331 142.698914 9696539 4.150001 -1.405132 1.262387 0.990783 0.549089

0.065 2.371470 9.340123 365.093292 9422435 3.104573 -1.261215 1.204987 0.976190 0.540702

0.075 2.367363 8.507390 260.519226 9624095 3.442962 -1.281171 1.229735 0.983046 0.548281

0.085 2.380511 8.266939 333.322540 9560037 4.714874 -1.232900 1.216185 0.978310 0.546207

0.095 2.391832 8.108346 197.874512 9676351 4.989373 -1.323776 1.243858 0.987152 0.549615

0.105 2.362009 7.999118 211.764587 9661980 3.624596 -1.319114 1.240164 0.986234 0.549291

“Fast RBF” warp evaluation - hardware implementation

The following tests used tri-linear interpolation :

H TPS Time Warp Time MS MRSD MI MMI NMI CC CM

0.015 2.391128 2.726993 402.790222 8839664 3.355862 -1.153191 1.199294 0.973688 0.518509

0.025 2.376399 0.957887 398.112732 8840230 4.164253 -1.181282 1.199444 0.974000 0.518501

0.035 2.395262 0.683706 396.761536 8847312 3.687699 -1.155597 1.198391 0.974088 0.518885

0.045 2.358572 0.566860 399.429382 8843707 3.913337 -1.131970 1.198170 0.973920 0.518699

0.055 2.386940 0.510334 360.008362 8841291 2.821343 -1.209982 1.199373 0.976533 0.518192

0.065 2.362258 0.485753 470.442993 8836981 4.184361 -1.151628 1.184447 0.969143 0.518475

0.075 2.381778 0.482194 565.435059 8853377 2.753368 -1.103441 1.181561 0.962806 0.519779

0.085 2.383088 0.482324 446.404907 8881201 3.736889 -1.132724 1.188455 0.970755 0.520979

0.095 2.384876 0.467512 415.788971 8867654 2.443402 -1.111952 1.194313 0.972798 0.519938

0.105 2.377853 0.461260 451.672974 8864043 4.159781 -1.144300 1.189919 0.970430 0.519942

B.2.4 Non-linear gradient synthetic test data

Brute force warp evaluation - software implementation

The gold standard software results :

Interp. TPS Time Warp Time MS MRSD MI MMI NMI CC CM

TRI 2.655427 790.550395 18.480581 15204015 3.637929 -1.607983 1.688309 0.998689 0.892309

NNI 2.662549 786.884338 22.613308 13681778 3.252796 -1.628734 1.593237 0.998357 0.757362

Full experimental results 172

Brute force warp evaluation - hardware implementation

The following tests used tri-linear interpolation :

TPS Time Warp Time MS MRSD MI MMI NMI CC CM

2.668583 12.150575 127.198395 10278898 3.382539 -1.607205 1.526939 0.990671 0.539471

Grid based warp evaluation

The following tests used tri-linear interpolation :

Grid TPS Time Warp Time MS MRSD MI MMI NMI CC CM

138 2.391126 457.594495 63.263046 14380895 3.073471 -1.675809 1.614877 0.995434 0.816229

125 2.398175 375.802197 63.206333 14378475 3.850818 -1.663173 1.614749 0.995437 0.816015

113 2.387243 307.532049 63.288033 14379032 3.710397 -1.717055 1.614788 0.995433 0.816070

100 2.379908 241.184076 63.208324 14378643 3.778827 -1.738901 1.614764 0.995437 0.816021

88 2.376288 187.267264 63.254997 14378927 3.344915 -1.666718 1.614749 0.995435 0.816030

75 2.380960 136.675623 63.256752 14378686 2.042067 -1.601609 1.614692 0.995434 0.816029

63 2.393656 97.006136 63.200871 14377591 3.784342 -1.730612 1.614699 0.995436 0.815918

50 2.351083 62.068753 63.271751 14371084 3.665046 -1.730035 1.614087 0.995432 0.815423

38 2.402667 36.876159 63.296906 14369833 2.837882 -1.662981 1.613937 0.995433 0.815290

25 2.391129 17.386524 63.386692 14341094 2.794712 -1.615735 1.611184 0.995420 0.812869

13 2.366035 6.540615 64.980927 14072572 2.647657 -1.728304 1.586158 0.995307 0.790168

“Fast RBF” warp evaluation - software implementation

The following tests used tri-linear interpolation :

H TPS Time Warp Time MS MRSD MI MMI NMI CC CM

0.015 2.674665 630.982268 18.628507 15283682 3.006503 -1.619225 1.683217 0.998680 0.888832

0.025 2.650567 77.914455 18.796854 15213791 4.410259 -1.624485 1.672714 0.998668 0.880734

0.035 2.645845 36.364490 21.923120 15099935 3.870007 -1.632417 1.651298 0.998443 0.868420

0.045 2.626389 22.874748 20.955948 14943515 4.723029 -1.675763 1.634978 0.998513 0.850366

0.055 2.612950 16.806778 30.616223 14028938 4.328679 -1.657945 1.567590 0.997819 0.750275

0.065 2.624126 14.400051 88.262660 13518032 4.000382 -1.650926 1.501356 0.993629 0.715923

0.075 2.628585 13.401670 68.003870 12864898 4.444007 -1.665076 1.472087 0.995104 0.661370

0.085 2.616597 13.158685 88.087507 13464396 3.627984 -1.728970 1.495436 0.993643 0.709426

0.095 2.614994 12.966087 43.822963 13265953 5.173137 -1.622350 1.498652 0.996857 0.700565

0.105 2.619249 12.825166 48.440777 13281555 4.977075 -1.615368 1.491866 0.996524 0.695686

Full experimental results 173

The following tests used nearest neighbour interpolation :

H TPS Time Warp Time MS MRSD MI MMI NMI CC CM

0.015 2.655410 620.840210 22.604454 13678321 3.838090 -1.637274 1.592884 0.998357 0.757203

0.025 2.657108 72.928955 22.649372 13673856 4.999471 -1.694171 1.592541 0.998353 0.756909

0.035 2.665363 31.928062 25.346563 13660332 4.251327 -1.699968 1.588909 0.998155 0.755972

0.045 2.669980 18.696148 24.377157 13645878 4.518627 -1.683085 1.586968 0.998227 0.755317

0.055 2.672976 12.723988 34.102936 13499502 4.658998 -1.705496 1.575404 0.997522 0.746197

0.065 2.664312 10.374887 112.581268 12996150 3.676647 -1.774933 1.518199 0.991826 0.714805

0.075 2.662237 9.435470 77.829178 12878555 4.310036 -1.663417 1.506778 0.994317 0.711591

0.085 2.686661 9.166762 114.838463 13056970 4.929541 -1.643502 1.516912 0.991656 0.720379

0.095 2.663806 8.987809 48.981800 13007993 3.445803 -1.739342 1.524079 0.996419 0.720857

0.105 2.661408 8.875854 55.305874 12983459 3.334520 -1.717871 1.518424 0.995959 0.717337

“Fast RBF” warp evaluation - hardware implementation

The following tests used tri-linear interpolation :

H TPS Time Warp Time MS MRSD MI MMI NMI CC CM

0.015 2.608479 2.507260 128.459153 10804707 3.369455 -1.660599 1.524744 0.990707 0.539358

0.025 2.612484 0.892530 126.011066 10877276 3.623257 -1.635933 1.525948 0.990886 0.541858

0.035 2.618628 0.629972 121.610433 10879980 3.850842 -1.601913 1.516394 0.991204 0.543363

0.045 2.615780 0.523501 124.729210 10879285 4.138794 -1.550483 1.509231 0.990979 0.542199

0.055 2.606009 0.472499 102.827263 11401094 4.441890 -1.658598 1.510325 0.992576 0.559310

0.065 2.611820 0.446739 162.741138 11050393 3.636330 -1.621917 1.447692 0.988211 0.562589

0.075 2.609573 0.435745 234.645180 10630001 4.079852 -1.513772 1.409508 0.982981 0.550770

0.085 2.609526 0.429452 144.783579 11226074 3.518717 -1.541242 1.437367 0.989517 0.569523

0.095 2.615183 0.426413 140.001258 11698360 4.380117 -1.630889 1.441866 0.989865 0.594191

0.105 2.615454 0.423736 156.866795 11259770 3.584064 -1.503846 1.426140 0.988637 0.576302

Appendix C

Programmable shaders -

source code

This appendix contains source code listings for the hardware brute force warp

evaluation technique and the hardware “Fast RBF” warp evaluation technique.

The source code is in Shader Model 3.0 (SM3) format and is supplied to the

experimental software in DirectX “effect files” (*.fx).

C.1 Brute force hardware evaluation

The following SM3 shader source code implements the brute force warp evalu-

ation on the GPU.

C.1.1 Source code for φ(r) = r

// textures

texture gLandmarks; // tps landmarks as a texture

texture gWeights; // tps weights as a texture

texture gSourceTexture; // source 3d texture

// sampler states

sampler Landmarks = sampler_state // landmark texture - nni

{

174

Programmable shaders - source code 175

Texture = <gLandmarks>;

MinFilter = POINT;

MagFilter = POINT;

};

sampler Weights = sampler_state // tps weights texture - nni

{

Texture = <gWeights>;

MinFilter = POINT;

MagFilter = POINT;

};

sampler SourceTexture = sampler_state // 3d source texture - tri

{

Texture = <gSourceTexture>;

MinFilter = LINEAR;

MagFilter = LINEAR;

};

// global parameters

float4x4 gWVP; // matrix for w/v/p

float2 gBottomLeft; // bottom left quad coord

float3 gDimensions; // volume dimensions

float3 gRecipDimensions; // reciprocal volume dimensions

float2 gTpsTextureSize; // size of tps landmark and weights textures

float3x3 gAffineXform; // tps affine transformation

float3 gAffineXlate; // tps affine translation

float3 gTextureAdjust; // 3d texture limits

float4 gConstants; // various constants

technique TransformTech {

pass P0

{

// set state

Lighting = FALSE;

FillMode = Solid;

// bind samplers

Sampler[0] = <Landmarks>;

Sampler[1] = <Weights>;

Programmable shaders - source code 176

Sampler[2] = <SourceTexture>;

// set vertex shader constants

VertexShaderConstant4[0] = <gWVP>;

VertexShaderConstant1[4] = <gBottomLeft>;

VertexShaderConstant1[5] = <gRecipDimensions>;

// set pixel shader constants

PixelShaderConstant3[0] = <gAffineXform>;

PixelShaderConstant1[3] = <gTpsTextureSize>;

PixelShaderConstant1[4] = <gAffineXlate>;

PixelShaderConstant1[5] = <gTextureAdjust>;

PixelShaderConstant1[6] = <gConstants>;

PixelShaderConstant1[7] = <gDimensions>;

// define vertex shader

VertexShader = asm

{

vs_3_0

dcl_position o0 // output vertex position

dcl_texcoord0 o1 // output texcoord (actual position)

dcl_position v0 // input vertex position

def c6, 0.0f, 0.0f, 0.0f, 0.0f // various constants

// set z = 0 on each vertex to ensure ortho

mov r0, v0 // copy incoming vertex

mov r0.z, c6.x // zeroise incoming z coordinate

m4x4 o0, r0, c0 // transform adjusted vertex by wvp matrix

// preserve original coordinates

add r0, v0, c4 // offset to bottom left

mul o1, r0, c5 // normalise

};

// define pixel shader

PixelShader = asm

{

ps_3_0

dcl_texcoord0 v0 // target voxel position - from vertex shader

dcl_2d s0 // landmarks - coded in a 2d texture

Programmable shaders - source code 177

dcl_2d s1 // weights - coded in a 2d texture

dcl_volume s2 // source volume as a 3d texture

// various constants 1/255, 1/log2(e)

def c8, 0.003921568f, 0.693147180559945f, 0.0f, 0.0f

defi i0, 255, 0, 0, 0 // loop control 1 - null decrement

defi i1, 255, 0, 0, 0 // loop control 2 - null decrement

// recover original voxel coordinates

mul r5.xyz, v0.xyz, c7.xyz // multiply 0..1 by volume dimensions

add r5.y, c7.y, -r5.y // invert y for dx9 texture

// initialise variables

mov r0.x, c6.x // float fIndex = 0.0f;

mov r1.xyz, c6.xxx // float3 fWeighted = {0.0f, 0.0f, 0.0f};

mov r2.xyzw, c6.xxxx // float4 TpsCoord = {0.0f, 0.0f, 0.0f, 0.0f};

// loop for all landmarks

loop aL, i0 // while (true)

break_ge r0.x, c6.w // if (fIndex >= nLandmarks) break;

loop aL, i1 // while (true) - nested loop needed for > 255

break_ge r0.x, c6.w // if (fIndex >= nLandmarks) break;

// TpsCoord.x = fIndex * (1.0f / gTpsTextureSize.x);

mul r2.x, r0.x, c3.x

// get landmark position

texldl r3, r2.xy, s0 // fLandmark = tex2Dlod(Landmarks, TpsCoord);

// calculate r for this landmark

add r4.xyz, r5.xyz, -r3.xyz // r4 = posL - fLandmark;

dp3 r4.w, r4, r4 // RSquared = (r4.x)^2 + (r4.y)^2 + (r4.z)^2;

rsq r3.w, r4.w // R = 1.0f / sqrt(RSquared);

rcp r3.w, r3.w // R = 1.0f / R;

// calculate rbf from r (r3.w) and/or r^2 (r4.w) and store in r4.x

//

mov r4.x, r3.w // fRbf = R;

// fetch coefficients for this landmark

texldl r3, r2.xy, s1 // fWeight = tex2Dlod(Weights, TpsCoord);

Programmable shaders - source code 178

// accumulate weight

mul r3.xyz, r3.xyz, r4.x

add r1.xyz, r1.xyz, r3.xyz

// increment index

add r0.x, r0.x, c6.z // fIndex += 1.0f;

endloop // endwhile

endloop // endwhile

// apply affine transformation

dp3 r3.x, r5, c0 // fWarped = mul(gAffineXform, posL);

dp3 r3.y, r5, c1 // " " " "

dp3 r3.z, r5, c2 // " " " "

add r2.xyz, r3.xyz, c4 // fWarped += gAffineXlate;

add r2.xyz, r2.xyz, r1.xyz // fWarped += fWeighted;

// convert to texture coordinates and look up

mul_sat r3.xyz, r2.xyz, c5.xyz // fWarped *= gTextureAdjust;

add r3.y, c6.z, -r3.y // tex.y = 1.0 - tex.y for DX9

texld r0, r3.xyz, s2 // fResult = tex3D(SourceTexture, fWarped);

mov oC0, r0

};

}

}

C.1.2 Source code for φ(r) = r2 log r

// textures

texture gLandmarks; // tps landmarks as a texture

texture gWeights; // tps weights as a texture

texture gSourceTexture; // source 3d texture

// sampler states

sampler Landmarks = sampler_state // landmark texture - nearest neighbour

{

Texture = <gLandmarks>;

MinFilter = POINT;

MagFilter = POINT;

};

Programmable shaders - source code 179

sampler Weights = sampler_state // tps weights texture - nearest neighbour

{

Texture = <gWeights>;

MinFilter = POINT;

MagFilter = POINT;

};

sampler SourceTexture = sampler_state // 3d source texture - tri-linear interpolation

{

Texture = <gSourceTexture>;

MinFilter = LINEAR;

MagFilter = LINEAR;

};

// global parameters

float4x4 gWVP; // external matrix for world/view/projection

float2 gBottomLeft; // bottom left quad coordinate

float3 gDimensions; // volume dimensions

float3 gRecipDimensions; // reciprocal volume dimensions

float2 gTpsTextureSize; // size of tps landmark and weights textures

float3x3 gAffineXform; // tps affine transformation

float3 gAffineXlate; // tps affine translation

float3 gTextureAdjust; // 3d texture limits

float4 gConstants; // various constants

technique TransformTech

{

pass P0

{

// set state

Lighting = FALSE;

FillMode = Solid;

// bind samplers

Sampler[0] = <Landmarks>;

Sampler[1] = <Weights>;

Sampler[2] = <SourceTexture>;

// set vertex shader constants

Programmable shaders - source code 180

VertexShaderConstant4[0] = <gWVP>;

VertexShaderConstant1[4] = <gBottomLeft>;

VertexShaderConstant1[5] = <gRecipDimensions>;

// set pixel shader constants

PixelShaderConstant3[0] = <gAffineXform>;

PixelShaderConstant1[3] = <gTpsTextureSize>;

PixelShaderConstant1[4] = <gAffineXlate>;

PixelShaderConstant1[5] = <gTextureAdjust>;

PixelShaderConstant1[6] = <gConstants>;

PixelShaderConstant1[7] = <gDimensions>;

// define vertex shader

VertexShader = asm

{

vs_3_0

dcl_position o0 // output vertex position

dcl_texcoord0 o1 // output texcoord (actual position)

dcl_position v0 // input vertex position

def c6, 0.0f, 0.0f, 0.0f, 0.0f // various constants

// set z = 0 on each vertex to ensure ortho

mov r0, v0 // copy incoming vertex

mov r0.z, c6.x // zeroise incoming z coordinate

m4x4 o0, r0, c0 // transform adjusted vertex by wvp matrix

// preserve original coordinates

add r0, v0, c4

mul o1, r0, c5 // normalise

};

// define pixel shader

PixelShader = asm

{

ps_3_0

dcl_texcoord0 v0 // target voxel position - from vertex shader

dcl_2d s0 // landmarks - coded in a 2d texture

dcl_2d s1 // weights - coded in a 2d texture

dcl_volume s2 // source volume as a 3d texture

def c8, 0.693147180559945f, 0.0f, 0.0f, 0.0f // various constants 1/log2(e)

Programmable shaders - source code 181

defi i0, 255, 0, 0, 0 // loop control 1 - null decrement

defi i1, 255, 0, 0, 0 // loop control 2 - null decrement

// recover original voxel coordinates

mul r5.xyz, v0.xyz, c7.xyz // multiply 0..1 by volume dimensions

add r5.y, c7.y, -r5.y // invert y for dx9 texture

// initialise variables

mov r0.x, c6.x // float fIndex = 0.0f;

mov r1.xyz, c6.xxx // float3 fWeighted = {0.0f, 0.0f, 0.0f};

mov r2.xyzw, c6.xxxx // float4 TpsCoord = {0.0f, 0.0f, 0.0f, 0.0f};

// loop for all landmarks

loop aL, i0 // while (true)

break_ge r0.x, c6.w // if (fIndex >= nLandmarks) break;

loop aL, i1 // while (true) - nested loop needed for > 255

break_ge r0.x, c6.w // if (fIndex >= nLandmarks) break;

// TpsCoord.x = fIndex * (1.0f / gTpsTextureSize.x);

mul r2.x, r0.x, c3.x

// get landmark position

texldl r3, r2.xy, s0 // fLandmark = tex2Dlod(Landmarks, TpsCoord);

// calculate r for this landmark

add r4.xyz, r5.xyz, -r3.xyz // r4 = posL - fLandmark;

dp3 r4.w, r4, r4 // RSquared = (r4.x)^2 + (r4.y)^2 + (r4.z)^2;

rsq r3.w, r4.w // R = 1.0f / sqrt(RSquared);

rcp r3.w, r3.w // R = 1.0f / R;

// calculate rbf from r (r3.w) and/or r^2 (r4.w) and store in r4.x

//

log r6.y, r3.w // r6 = log2(R);

mul r6.y, r6.y, c8.x // r6 *= 1 / log2(e); so r6.y = loge(R)

mul r4.x, r4.w, r6.y // fRbf = R^2logR;

// fetch coefficients for this landmark

texldl r3, r2.xy, s1 // fWeight = tex2Dlod(Weights, TpsCoord);

// accumulate weight

Programmable shaders - source code 182

mul r3.xyz, r3.xyz, r4.x

add r1.xyz, r1.xyz, r3.xyz

// increment index

add r0.x, r0.x, c6.z // fIndex += 1.0f;

endloop // endwhile

endloop // endwhile

// apply affine transformation

dp3 r3.x, r5, c0 // fWarped = mul(gAffineXform, posL);

dp3 r3.y, r5, c1 // " " " "

dp3 r3.z, r5, c2 // " " " "

add r2.xyz, r3.xyz, c4 // fWarped += gAffineXlate;

add r2.xyz, r2.xyz, r1.xyz // fWarped += fWeighted;

// convert to texture coordinates and look up

mul_sat r3.xyz, r2.xyz, c5.xyz // fWarped *= gTextureAdjust;

add r3.y, c6.z, -r3.y // tex.y = 1.0 - tex.y for DX9

texld r0, r3.xyz, s2 // fResult = tex3D(SourceTexture, fWarped);

mov oC0, r0

};

}

}

C.2 “Fast RBF” hardware evaluation

The following SM3 shader source code implements the “Fast RBF” warp eval-

uation on the GPU.

C.2.1 Source code for φ(r) = r

// textures

texture gLandmarks; // landmarks as a texture

texture gWeights; // weights as a texture

texture gXGrid; // X grid as a texture

texture gSourceTexture; // source 3d texture

// sampler states

Programmable shaders - source code 183

sampler Landmarks = sampler_state // landmark texture - nearest neighbour

{

Texture = <gLandmarks>;

MinFilter = POINT;

MagFilter = POINT;

};

sampler Weights = sampler_state // weights texture - nearest neighbour

{

Texture = <gWeights>;

MinFilter = POINT;

MagFilter = POINT;

};

sampler XGrid = sampler_state // X grid texture - nearest neighbour

{

Texture = <gXGrid>;

MinFilter = POINT;

MagFilter = POINT;

};

sampler SourceTexture = sampler_state // 3d source texture - tri-linear interpolation

{

Texture = <gSourceTexture>;

MinFilter = LINEAR;

MagFilter = LINEAR;

};

// global parameters

float2 gTpsTextureSize; // size of landmark and weights textures

float2 gRecipTpsTextureSize; // reciprocal size of landmark and weights textures

float4 gBottomLeft; // bottom left quad coordinate

float3 gOriginX; // origin of X grid

float3 gDimensions; // dimensions

float4 gConstants; // various constants

float4 gFlat3D; // flat 3d constants

float3 gRecipDimensions; // reciprocal dimensions

float3x3 gAffineXform; // tps affine transformation

float3 gAffineXlate; // tps affine translation

float3 gTextureAdjust; // 3d texture limits

Programmable shaders - source code 184

// the following technique performs the coarse

// summation to create grid X from grid Y, which

// is supplied as a set of landmarks and weights

// in two 2d textures. The X grid nodes are

// supplied as vertices and actual positions are

// derived in the pixel shader using the X grid

// start position and the grid size, H.

technique SummationTech

{

pass P0

{

// set state

Lighting = FALSE;

FillMode = Solid;

// bind samplers

Sampler[0] = <Landmarks>;

Sampler[1] = <Weights>;

// set pixel shader constants

PixelShaderConstant1[0] = <gTpsTextureSize>;

PixelShaderConstant1[1] = <gOriginX>;

PixelShaderConstant1[2] = <gConstants>; // [0.0f, H, 1.0f, nLandmarks]

PixelShaderConstant1[3] = <gRecipTpsTextureSize>; // reciprocal for easy mul

PixelShaderConstant1[4] = <gDimensions>;

PixelShaderConstant1[5] = <gBottomLeft>;

// define pixel shader

PixelShader = asm

{

ps_3_0

dcl vPos.xy // target screen position

dcl_2d s0 // landmarks - coded in a 2d texture

dcl_2d s1 // weights - coded in a 2d texture

defi i0, 255, 0, 0, 0 // loop control 1 - null decrement

defi i1, 255, 0, 0, 0 // loop control 2 - null decrement

// recover original X node coordinates

add r5.xy, vPos.xy, c5.xy // recover offset for this slice

Programmable shaders - source code 185

mov r5.z, c5.z

// calculate actual position

mov r0.x, c2.y

mad r5.xyz, r5.xyz, r0.x, c1 // multiply by H and add origin

// initialise variables

mov r0.x, c2.x // float fIndex = 0.0f;

mov r1.xyz, c2.xxx // float3 fWeighted = {0.0f, 0.0f, 0.0f};

mov r2.xyzw, c2.xxxx // float4 TpsCoord = {0.0f, 0.0f, 0.0f, 0.0f};

// loop for all landmarks

loop aL, i0 // while (true)

break_ge r0.x, c2.w // if (fIndex >= nLandmarks) break;

loop aL, i1 // while (true) - nested loop needed for > 255

break_ge r0.x, c2.w // if (fIndex >= nLandmarks) break;

// TpsCoord.y = floor(fIndex / gTpsTextureSize.x);

mul r2.y, r0.x, c3.x // TpsCoord.y = fIndex * gRecipTpsTextureSize.x;

frc r3.z, r2.y // extract fractional part of TpsCoord.y

add r2.y, r2.y, -r3.z // TpsCoord.y = floor(TpsCoord.y)

// TpsCoord.x = fIndex - (gTpsTextureSize.x * TpsCoord.y);

mad r2.x, -r2.y, c0.x, r0.x // TpsCoord.x = remainder

// TpsCoord.xy /= gTpsTextureSize;

mul r2.xy, r2.xy, c3.xy // normalise TpsCoord.xy

// get landmark position

texldl r3, r2.xy, s0 // fLandmark = tex2Dlod(Landmarks, TpsCoord);

// calculate r for this landmark

add r4.xyz, r5.xyz, -r3.xyz // r4 = posL - fLandmark;

dp3 r4.w, r4, r4 // RSquared = (r4.x)^2 + (r4.y)^2 + (r4.z)^2;

rsq r3.w, r4.w // R = 1.0f / sqrt(RSquared);

rcp r3.w, r3.w // R = 1.0f / R;

// calculate rbf from r (r3.w) and/or r^2 (r4.w) and store in r4.x

//

mov r4.x, r3.w // fRbf = R;

Programmable shaders - source code 186

// fetch coefficients for this landmark

texldl r3, r2.xy, s1 // fWeight = tex2Dlod(Weights, TpsCoord);

// accumulate weight

mad r1.xyz, r3.xyz, r4.x, r1.xyz // fWeighted += fWeight * fRbf;

// increment index

add r0.x, r0.x, c2.z // fIndex += 1.0f;

endloop // endwhile

endloop // endwhile

// output weights

mov oC0, r1

};

}

}

// the following technique applies the tensor

// product interpolation for each voxel and

// returns the value of the warped voxel position

// from the 3d source texture.

technique TransformTech

{

pass P0

{

// set state

Lighting = FALSE;

FillMode = Solid;

// bind samplers

Sampler[0] = <XGrid>;

Sampler[1] = <SourceTexture>;

// set pixel shader constants

PixelShaderConstant3[0] = <gAffineXform>;

PixelShaderConstant1[3] = <gAffineXlate>;

PixelShaderConstant1[4] = <gTextureAdjust>;

PixelShaderConstant1[5] = <gConstants>; // [H, 1/H, Columns, 1/Columns]

PixelShaderConstant1[6] = <gBottomLeft>;

Programmable shaders - source code 187

PixelShaderConstant1[7] = <gDimensions>;

PixelShaderConstant1[8] = <gRecipDimensions>;

PixelShaderConstant1[9] = <gOriginX>;

PixelShaderConstant1[10] = <gFlat3D>; // [CellWidth, CellHeight, RecipTexW, RecipTexH]

// define pixel shader

PixelShader = asm

{

ps_3_0

dcl vPos.xy // target screen position

dcl_2d s0 // X grid - coded in a 2d texture

dcl_volume s1 // source volume as a 3d texture

def c11, 1.0f, 1.0f, 1.0f, 0.0f // various constants

def c12, 0.0f, 1.0f, 0.0f, 1.0f // various constants

def c13, 0.000001f, 0.0f, 0.0f, 0.0f

// get original voxel coordinates

mov r0, vPos.xy // recover z for this slice

mov r0.z, c6.z

// normalise voxel position (keep in r5)

mul r5, r0, c8 // xyz /= volume dimensions

// adjust to X grid origin

add r0, r5, -c9 // xyz -= xorigin

// find the integral x node coordinates (r1) and

// the city-block distances to these (r2) as

// a fraction of H (easier for interpolation weights)

mul r1.xyz, r0.xyz, c5.yyy // r1 = xyz / H;

frc r3, r1 // r3 = frac(r1); note == dW0

add r1, r1, -r3 // r1 = floor(r1);

// calculate interpolation weights dW0 (r2) and dW1 (r3)

add r2, c11, -r3 // dW1 = 1 - dW0

// initialise tensor product

mov r10.xyz, c11.w // fWeighted = (0, 0, 0);

// interpolate from X grid - node 1 of 8

Programmable shaders - source code 188

mul r4.y, r2.x, r2.y

mul r4.x, r4.y, r2.z // dWeight = dWX0 * dWY0 * dWZ0;

mov r6.x, c13.x // add epsilon to avoid frc = 1

mad r6.y, r1.z, c5.w, r6.x // fRow = z * (1 / nColumns);

frc r6.x, r6.y

add r6.y, r6.y, -r6.x // fRow = floor(fRow);

mad r6.x, -r6.y, c5.z, r1.z // fCol = z - (fRow * nColumns);

mad r7.xy, r6.xy, c10.xy, r1.xy // FlatXY = xy + (RowCol * Cellsize);

mul r7.xy, r7.xy, c10.zw // get flat xy texture coordinates

texld r8, r7, s0 // get X grid weights

mad r10.xyz, r8.xyz, r4.x, r10.xyz // fWeighted += (dWeight * X grid weights);

// node 2 of 8

add r9.xyz, r1.xyz, c12.xxy // node = x, y, z+1

mul r4.x, r4.y, r3.z // dWeight = dWX0 * dWY0 * dWZ1;

mov r6.x, c13.x // add epsilon to avoid frc = 1

mad r6.y, r9.z, c5.w, r6.x // fRow = z * (1 / nColumns);

frc r6.x, r6.y

add r6.y, r6.y, -r6.x // fRow = floor(fRow);

mad r6.x, -r6.y, c5.z, r9.z // fCol = z - (fRow * nColumns);

mad r7.xy, r6.xy, c10.xy, r9.xy // FlatXY = xy + (RowCol * Cellsize);

mul r7.xy, r7.xy, c10.zw // get flat xy texture coordinates

texld r8, r7, s0 // get X grid weights

mad r10.xyz, r8.xyz, r4.x, r10.xyz // fWeighted += (dWeight * X grid weights);

// node 3 of 8

add r9.xyz, r1.xyz, c12.xyz // node = x, y+1, z

mul r4.y, r2.x, r3.y

mul r4.x, r4.y, r2.z // dWeight = dWX0 * dWY1 * dWZ0;

mov r6.x, c13.x // add epsilon to avoid frc = 1

mad r6.y, r9.z, c5.w, r6.x // fRow = z * (1 / nColumns);

frc r6.x, r6.y

add r6.y, r6.y, -r6.x // fRow = floor(fRow);

mad r6.x, -r6.y, c5.z, r9.z // fCol = z - (fRow * nColumns);

mad r7.xy, r6.xy, c10.xy, r9.xy // FlatXY = xy + (RowCol * Cellsize);

mul r7.xy, r7.xy, c10.zw // get flat xy texture coordinates

texld r8, r7, s0 // get X grid weights

mad r10.xyz, r8.xyz, r4.x, r10.xyz // fWeighted += (dWeight * X grid weights);

// node 4 of 8

Programmable shaders - source code 189

add r9.xyz, r1.xyz, c12.xyy // node = x, y+1, z+1

mul r4.x, r4.y, r3.z // dWeight = dWX0 * dWY1 * dWZ1;

mov r6.x, c13.x // add epsilon to avoid frc = 1

mad r6.y, r9.z, c5.w, r6.x // fRow = z * (1 / nColumns);

frc r6.x, r6.y

add r6.y, r6.y, -r6.x // fRow = floor(fRow);

mad r6.x, -r6.y, c5.z, r9.z // fCol = z - (fRow * nColumns);

mad r7.xy, r6.xy, c10.xy, r9.xy // FlatXY = xy + (RowCol * Cellsize);

mul r7.xy, r7.xy, c10.zw // get flat xy texture coordinates

texld r8, r7, s0 // get X grid weights

mad r10.xyz, r8.xyz, r4.x, r10.xyz // fWeighted += (dWeight * X grid weights);

// node 5 of 8

add r9.xyz, r1.xyz, c12.yzz // node = x+1, y, z

mul r4.y, r3.x, r2.y

mul r4.x, r4.y, r2.z // dWeight = dWX1 * dWY0 * dWZ0;

mov r6.x, c13.x // add epsilon to avoid frc = 1

mad r6.y, r9.z, c5.w, r6.x // fRow = z * (1 / nColumns);

frc r6.x, r6.y

add r6.y, r6.y, -r6.x // fRow = floor(fRow);

mad r6.x, -r6.y, c5.z, r9.z // fCol = z - (fRow * nColumns);

mad r7.xy, r6.xy, c10.xy, r9.xy // FlatXY = xy + (RowCol * Cellsize);

mul r7.xy, r7.xy, c10.zw // get flat xy texture coordinates

texld r8, r7, s0 // get X grid weights

mad r10.xyz, r8.xyz, r4.x, r10.xyz // fWeighted += (dWeight * X grid weights);

// node 6 of 8

add r9.xyz, r1.xyz, c12.yzw // node = x+1, y, z+1

mul r4.x, r4.y, r3.z // dWeight = dWX1 * dWY0 * dWZ0;

mov r6.x, c13.x // add epsilon to avoid frc = 1

mad r6.y, r9.z, c5.w, r6.x // fRow = z * (1 / nColumns);

frc r6.x, r6.y

add r6.y, r6.y, -r6.x // fRow = floor(fRow);

mad r6.x, -r6.y, c5.z, r9.z // fCol = z - (fRow * nColumns);

mad r7.xy, r6.xy, c10.xy, r9.xy // FlatXY = xy + (RowCol * Cellsize);

mul r7.xy, r7.xy, c10.zw // get flat xy texture coordinates

texld r8, r7, s0 // get X grid weights

mad r10.xyz, r8.xyz, r4.x, r10.xyz // fWeighted += (dWeight * X grid weights);

// node 7 of 8

Programmable shaders - source code 190

add r9.xyz, r1.xyz, c12.yyz // node = x+1, y+1, z

mul r4.y, r3.x, r3.y

mul r4.x, r4.y, r2.z // dWeight = dWX1 * dWY1 * dWZ0;

mov r6.x, c13.x // add epsilon to avoid frc = 1

mad r6.y, r9.z, c5.w, r6.x // fRow = z * (1 / nColumns);

frc r6.x, r6.y

add r6.y, r6.y, -r6.x // fRow = floor(fRow);

mad r6.x, -r6.y, c5.z, r9.z // fCol = z - (fRow * nColumns);

mad r7.xy, r6.xy, c10.xy, r9.xy // FlatXY = xy + (RowCol * Cellsize);

mul r7.xy, r7.xy, c10.zw // get flat xy texture coordinates

texld r8, r7, s0 // get X grid weights

mad r10.xyz, r8.xyz, r4.x, r10.xyz // fWeighted += (dWeight * X grid weights);

// node 8 of 8

add r9.xyz, r1.xyz, c12.yyy // node = x+1, y+1, z+1

mul r4.x, r4.y, r3.z // dWeight = dWX1 * dWY1 * dWZ1;

mov r6.x, c13.x // add epsilon to avoid frc = 1

mad r6.y, r9.z, c5.w, r6.x // fRow = z * (1 / nColumns);

frc r6.x, r6.y

add r6.y, r6.y, -r6.x // fRow = floor(fRow);

mad r6.x, -r6.y, c5.z, r9.z // fCol = z - (fRow * nColumns);

mad r7.xy, r6.xy, c10.xy, r9.xy // FlatXY = xy + (RowCol * Cellsize);

mul r7.xy, r7.xy, c10.zw // get flat xy texture coordinates

texld r8, r7, s0 // get X grid weights

mad r10.xyz, r8.xyz, r4.x, r10.xyz // fWeighted += (dWeight * X grid weights);

// r10.xyz finally holds the tensor product

// so apply the affine transformation

dp3 r3.x, r5, c0 // fWarped = mul(gAffineXform, posL);

dp3 r3.y, r5, c1 // " " " "

dp3 r3.z, r5, c2 // " " " "

add r2.xyz, r3.xyz, c3 // fWarped += gAffineXlate;

add r2, r2, r10 // fWarped += fWeighted;

// still in normalised space so convert back to voxels

mul r2, r2, c7 // fWarped *= volume dimensions

// convert to texture coordinates and look up

mul_sat r3.xyz, r2.xyz, c4.xyz // fWarped *= gTextureAdjust;

add r3.y, c11.y, -r3.y // tex.y = 1.0 - tex.y for DX9

Programmable shaders - source code 191

texld r0, r3.xyz, s1 // fResult = tex3D(SourceTexture, fWarped);

mov oC0, r0

};

}

}

C.2.2 Source code for φ(r) = r2 log r

// textures

texture gLandmarks; // landmarks as a texture

texture gWeights; // weights as a texture

texture gXGrid; // X grid as a texture

texture gSourceTexture; // source 3d texture

// sampler states

sampler Landmarks = sampler_state // landmark texture - nearest neighbour

{

Texture = <gLandmarks>;

MinFilter = POINT;

MagFilter = POINT;

};

sampler Weights = sampler_state // weights texture - nearest neighbour

{

Texture = <gWeights>;

MinFilter = POINT;

MagFilter = POINT;

};

sampler XGrid = sampler_state // X grid texture - nearest neighbour

{

Texture = <gXGrid>;

MinFilter = POINT;

MagFilter = POINT;

};

sampler SourceTexture = sampler_state // 3d source texture - tri-linear interpolation

{

Texture = <gSourceTexture>;

MinFilter = LINEAR;

Programmable shaders - source code 192

MagFilter = LINEAR;

};

// global parameters

float2 gTpsTextureSize; // size of landmark and weights textures

float2 gRecipTpsTextureSize; // reciprocal size of landmark and weights textures

float4 gBottomLeft; // bottom left quad coordinate

float3 gOriginX; // origin of X grid

float3 gDimensions; // dimensions

float4 gConstants; // various constants

float4 gFlat3D; // flat 3d constants

float3 gRecipDimensions; // reciprocal dimensions

float3x3 gAffineXform; // tps affine transformation

float3 gAffineXlate; // tps affine translation

float3 gTextureAdjust; // 3d texture limits

// the following technique performs the coarse

// summation to create grid X from grid Y, which

// is supplied as a set of landmarks and weights

// in two 2d textures. The X grid nodes are

// supplied as vertices and actual positions are

// derived in the pixel shader using the X grid

// start position and the grid size, H.

technique SummationTech

{

pass P0

{

// set state

Lighting = FALSE;

FillMode = Solid;

// bind samplers

Sampler[0] = <Landmarks>;

Sampler[1] = <Weights>;

// set pixel shader constants

PixelShaderConstant1[0] = <gTpsTextureSize>;

PixelShaderConstant1[1] = <gOriginX>;

PixelShaderConstant1[2] = <gConstants>; // [0.0f, H, 1.0f, nLandmarks]

PixelShaderConstant1[3] = <gRecipTpsTextureSize>; // reciprocal for easy mul

Programmable shaders - source code 193

PixelShaderConstant1[4] = <gDimensions>;

PixelShaderConstant1[5] = <gBottomLeft>;

// define pixel shader

PixelShader = asm

{

ps_3_0

dcl vPos.xy // target screen position

dcl_2d s0 // landmarks - coded in a 2d texture

dcl_2d s1 // weights - coded in a 2d texture

defi i0, 255, 0, 0, 0 // loop control 1 - null decrement

defi i1, 255, 0, 0, 0 // loop control 2 - null decrement

// recover original X node coordinates

add r5.xy, vPos.xy, c5.xy // recover offset for this slice

mov r5.z, c5.z

// calculate actual position

mov r0.x, c2.y

mad r5.xyz, r5.xyz, r0.x, c1 // multiply by H and add origin

// initialise variables

mov r0.x, c2.x // float fIndex = 0.0f;

mov r1.xyz, c2.xxx // float3 fWeighted = {0.0f, 0.0f, 0.0f};

mov r2.xyzw, c2.xxxx // float4 TpsCoord = {0.0f, 0.0f, 0.0f, 0.0f};

// loop for all landmarks

loop aL, i0 // while (true)

break_ge r0.x, c2.w // if (fIndex >= nLandmarks) break;

loop aL, i1 // while (true) - nested loop needed for > 255

break_ge r0.x, c2.w // if (fIndex >= nLandmarks) break;

// TpsCoord.y = floor(fIndex / gTpsTextureSize.x);

mul r2.y, r0.x, c3.x // TpsCoord.y = fIndex * gRecipTpsTextureSize.x;

frc r3.z, r2.y // extract fractional part of TpsCoord.y

add r2.y, r2.y, -r3.z // TpsCoord.y = floor(TpsCoord.y)

// TpsCoord.x = fIndex - (gTpsTextureSize.x * TpsCoord.y);

mad r2.x, -r2.y, c0.x, r0.x // TpsCoord.x = remainder

Programmable shaders - source code 194

// TpsCoord.xy /= gTpsTextureSize;

mul r2.xy, r2.xy, c3.xy // normalise TpsCoord.xy

// get landmark position

texldl r3, r2.xy, s0 // fLandmark = tex2Dlod(Landmarks, TpsCoord);

// calculate r for this landmark

add r4.xyz, r5.xyz, -r3.xyz // r4 = posL - fLandmark;

dp3 r4.w, r4, r4 // RSquared = (r4.x)^2 + (r4.y)^2 + (r4.z)^2;

rsq r3.w, r4.w // R = 1.0f / sqrt(RSquared);

rcp r3.w, r3.w // R = 1.0f / R;

// calculate rbf from r (r3.w) and/or r^2 (r4.w) and store in r4.x

//

log r6.y, r3.w // r6 = log2(R);

mul r6.y, r6.y, c6.x // r6 *= 1 / log2(e); so r6.y = loge(R)

mul r4.x, r4.w, r6.y // fRbf = R^2logR;

// fetch coefficients for this landmark

texldl r3, r2.xy, s1 // fWeight = tex2Dlod(Weights, TpsCoord);

// accumulate weight

mad r1.xyz, r3.xyz, r4.x, r1.xyz // fWeighted += fWeight * fRbf;

// increment index

add r0.x, r0.x, c2.z // fIndex += 1.0f;

endloop // endwhile

endloop // endwhile

// output weights

mov oC0, r1

};

}

}

// the following technique applies the tensor

// product interpolation for each voxel and

// returns the value of the warped voxel position

// from the 3d source texture.

technique TransformTech

Programmable shaders - source code 195

{

pass P0

{

// set state

Lighting = FALSE;

FillMode = Solid;

// bind samplers

Sampler[0] = <XGrid>;

Sampler[1] = <SourceTexture>;

// set pixel shader constants

PixelShaderConstant3[0] = <gAffineXform>;

PixelShaderConstant1[3] = <gAffineXlate>;

PixelShaderConstant1[4] = <gTextureAdjust>;

PixelShaderConstant1[5] = <gConstants>; // [H, 1/H, Columns, 1/Columns]

PixelShaderConstant1[6] = <gBottomLeft>;

PixelShaderConstant1[7] = <gDimensions>;

PixelShaderConstant1[8] = <gRecipDimensions>;

PixelShaderConstant1[9] = <gOriginX>;

PixelShaderConstant1[10] = <gFlat3D>; // [CellWidth, CellHeight, RecipTexW, RecipTexH]

// define pixel shader

PixelShader = asm

{

ps_3_0

dcl vPos.xy // target screen position

dcl_2d s0 // X grid - coded in a 2d texture

dcl_volume s1 // source volume as a 3d texture

def c11, 1.0f, 1.0f, 1.0f, 0.0f // various constants

def c12, 0.0f, 1.0f, 0.0f, 1.0f // various constants

def c13, 0.000001f, 0.0f, 0.0f, 0.0f

// get original voxel coordinates

mov r0, vPos.xy // recover z for this slice

mov r0.z, c6.z

// normalise voxel position (keep in r5)

mul r5, r0, c8 // xyz /= volume dimensions

Programmable shaders - source code 196

// adjust to X grid origin

add r0, r5, -c9 // xyz -= xorigin

// find the integral x node coordinates (r1) and

// the city-block distances to these (r2) as

// a fraction of H (easier for interpolation weights)

mul r1.xyz, r0.xyz, c5.yyy // r1 = xyz / H;

frc r3, r1 // r3 = frac(r1); note == dW0

add r1, r1, -r3 // r1 = floor(r1);

// calculate interpolation weights dW0 (r2) and dW1 (r3)

add r2, c11, -r3 // dW1 = 1 - dW0

// initialise tensor product

mov r10.xyz, c11.w // fWeighted = (0, 0, 0);

// interpolate from X grid - node 1 of 8

mul r4.y, r2.x, r2.y

mul r4.x, r4.y, r2.z // dWeight = dWX0 * dWY0 * dWZ0;

mov r6.x, c13.x // add epsilon to avoid frc = 1

mad r6.y, r1.z, c5.w, r6.x // fRow = z * (1 / nColumns);

frc r6.x, r6.y

add r6.y, r6.y, -r6.x // fRow = floor(fRow);

mad r6.x, -r6.y, c5.z, r1.z // fCol = z - (fRow * nColumns);

mad r7.xy, r6.xy, c10.xy, r1.xy // FlatXY = xy + (RowCol * Cellsize);

mul r7.xy, r7.xy, c10.zw // get flat xy texture coordinates

texld r8, r7, s0 // get X grid weights

mad r10.xyz, r8.xyz, r4.x, r10.xyz // fWeighted += (dWeight * X grid weights);

// node 2 of 8

add r9.xyz, r1.xyz, c12.xxy // node = x, y, z+1

mul r4.x, r4.y, r3.z // dWeight = dWX0 * dWY0 * dWZ1;

mov r6.x, c13.x // add epsilon to avoid frc = 1

mad r6.y, r9.z, c5.w, r6.x // fRow = z * (1 / nColumns);

frc r6.x, r6.y

add r6.y, r6.y, -r6.x // fRow = floor(fRow);

mad r6.x, -r6.y, c5.z, r9.z // fCol = z - (fRow * nColumns);

mad r7.xy, r6.xy, c10.xy, r9.xy // FlatXY = xy + (RowCol * Cellsize);

mul r7.xy, r7.xy, c10.zw // get flat xy texture coordinates

texld r8, r7, s0 // get X grid weights

Programmable shaders - source code 197

mad r10.xyz, r8.xyz, r4.x, r10.xyz // fWeighted += (dWeight * X grid weights);

// node 3 of 8

add r9.xyz, r1.xyz, c12.xyz // node = x, y+1, z

mul r4.y, r2.x, r3.y

mul r4.x, r4.y, r2.z // dWeight = dWX0 * dWY1 * dWZ0;

mov r6.x, c13.x // add epsilon to avoid frc = 1

mad r6.y, r9.z, c5.w, r6.x // fRow = z * (1 / nColumns);

frc r6.x, r6.y

add r6.y, r6.y, -r6.x // fRow = floor(fRow);

mad r6.x, -r6.y, c5.z, r9.z // fCol = z - (fRow * nColumns);

mad r7.xy, r6.xy, c10.xy, r9.xy // FlatXY = xy + (RowCol * Cellsize);

mul r7.xy, r7.xy, c10.zw // get flat xy texture coordinates

texld r8, r7, s0 // get X grid weights

mad r10.xyz, r8.xyz, r4.x, r10.xyz // fWeighted += (dWeight * X grid weights);

// node 4 of 8

add r9.xyz, r1.xyz, c12.xyy // node = x, y+1, z+1

mul r4.x, r4.y, r3.z // dWeight = dWX0 * dWY1 * dWZ1;

mov r6.x, c13.x // add epsilon to avoid frc = 1

mad r6.y, r9.z, c5.w, r6.x // fRow = z * (1 / nColumns);

frc r6.x, r6.y

add r6.y, r6.y, -r6.x // fRow = floor(fRow);

mad r6.x, -r6.y, c5.z, r9.z // fCol = z - (fRow * nColumns);

mad r7.xy, r6.xy, c10.xy, r9.xy // FlatXY = xy + (RowCol * Cellsize);

mul r7.xy, r7.xy, c10.zw // get flat xy texture coordinates

texld r8, r7, s0 // get X grid weights

mad r10.xyz, r8.xyz, r4.x, r10.xyz // fWeighted += (dWeight * X grid weights);

// node 5 of 8

add r9.xyz, r1.xyz, c12.yzz // node = x+1, y, z

mul r4.y, r3.x, r2.y

mul r4.x, r4.y, r2.z // dWeight = dWX1 * dWY0 * dWZ0;

mov r6.x, c13.x // add epsilon to avoid frc = 1

mad r6.y, r9.z, c5.w, r6.x // fRow = z * (1 / nColumns);

frc r6.x, r6.y

add r6.y, r6.y, -r6.x // fRow = floor(fRow);

mad r6.x, -r6.y, c5.z, r9.z // fCol = z - (fRow * nColumns);

mad r7.xy, r6.xy, c10.xy, r9.xy // FlatXY = xy + (RowCol * Cellsize);

mul r7.xy, r7.xy, c10.zw // get flat xy texture coordinates

Programmable shaders - source code 198

texld r8, r7, s0 // get X grid weights

mad r10.xyz, r8.xyz, r4.x, r10.xyz // fWeighted += (dWeight * X grid weights);

// node 6 of 8

add r9.xyz, r1.xyz, c12.yzw // node = x+1, y, z+1

mul r4.x, r4.y, r3.z // dWeight = dWX1 * dWY0 * dWZ0;

mov r6.x, c13.x // add epsilon to avoid frc = 1

mad r6.y, r9.z, c5.w, r6.x // fRow = z * (1 / nColumns);

frc r6.x, r6.y

add r6.y, r6.y, -r6.x // fRow = floor(fRow);

mad r6.x, -r6.y, c5.z, r9.z // fCol = z - (fRow * nColumns);

mad r7.xy, r6.xy, c10.xy, r9.xy // FlatXY = xy + (RowCol * Cellsize);

mul r7.xy, r7.xy, c10.zw // get flat xy texture coordinates

texld r8, r7, s0 // get X grid weights

mad r10.xyz, r8.xyz, r4.x, r10.xyz // fWeighted += (dWeight * X grid weights);

// node 7 of 8

add r9.xyz, r1.xyz, c12.yyz // node = x+1, y+1, z

mul r4.y, r3.x, r3.y

mul r4.x, r4.y, r2.z // dWeight = dWX1 * dWY1 * dWZ0;

mov r6.x, c13.x // add epsilon to avoid frc = 1

mad r6.y, r9.z, c5.w, r6.x // fRow = z * (1 / nColumns);

frc r6.x, r6.y

add r6.y, r6.y, -r6.x // fRow = floor(fRow);

mad r6.x, -r6.y, c5.z, r9.z // fCol = z - (fRow * nColumns);

mad r7.xy, r6.xy, c10.xy, r9.xy // FlatXY = xy + (RowCol * Cellsize);

mul r7.xy, r7.xy, c10.zw // get flat xy texture coordinates

texld r8, r7, s0 // get X grid weights

mad r10.xyz, r8.xyz, r4.x, r10.xyz // fWeighted += (dWeight * X grid weights);

// node 8 of 8

add r9.xyz, r1.xyz, c12.yyy // node = x+1, y+1, z+1

mul r4.x, r4.y, r3.z // dWeight = dWX1 * dWY1 * dWZ1;

mov r6.x, c13.x // add epsilon to avoid frc = 1

mad r6.y, r9.z, c5.w, r6.x // fRow = z * (1 / nColumns);

frc r6.x, r6.y

add r6.y, r6.y, -r6.x // fRow = floor(fRow);

mad r6.x, -r6.y, c5.z, r9.z // fCol = z - (fRow * nColumns);

mad r7.xy, r6.xy, c10.xy, r9.xy // FlatXY = xy + (RowCol * Cellsize);

mul r7.xy, r7.xy, c10.zw // get flat xy texture coordinates

Programmable shaders - source code 199

texld r8, r7, s0 // get X grid weights

mad r10.xyz, r8.xyz, r4.x, r10.xyz // fWeighted += (dWeight * X grid weights);

// r10.xyz finally holds the tensor product

// so apply the affine transformation

dp3 r3.x, r5, c0 // fWarped = mul(gAffineXform, posL);

dp3 r3.y, r5, c1 // " " " "

dp3 r3.z, r5, c2 // " " " "

add r2.xyz, r3.xyz, c3 // fWarped += gAffineXlate;

add r2, r2, r10 // fWarped += fWeighted;

// still in normalised space so convert back to voxels

mul r2, r2, c7 // fWarped *= volume dimensions

// convert to texture coordinates and look up

mul_sat r3.xyz, r2.xyz, c4.xyz // fWarped *= gTextureAdjust;

add r3.y, c11.y, -r3.y // tex.y = 1.0 - tex.y for DX9

texld r0, r3.xyz, s1 // fResult = tex3D(SourceTexture, fWarped);

mov oC0, r0

};

}

}

Bibliography

[1] Ackermann, M. J. The Visible Human Project: National Library of

Medicine – http://www.nlm.nih.gov. Web Site, 1995.

[2] Aljabar, P., Bhatia, K., Hajnal, J., Boardman, J., Srinivasan,

L., Rutherford, M., Dyet, L., Edwards, A., and Rueckert, D.

Analysis of growth in the developing brain using non-rigid registration.

In Biomedical Imaging: Macro to Nano, 2006. 3rd IEEE International

Symposium on (6-9 April 2006), pp. 201–204.

[3] Alvarez, N. A., and Sanchiz, J. M. Image registration from mutual

information of edge correspondences. Progress in Pattern Recognition,

Image Analysis and Applications, Proceedings 3773 (2005), 528–539.

[4] Andronache, A. S. Multi-Modal Non-Rigid Registration of Volumetric

Medical Images. PhD thesis, University Politehnica of Bucharest, 2006.

[5] Audette, M. A., Ferrie, F. P., and Peters, T. M. An algorithmic

overview of surface registration techniques for medical imaging. Medical

Image Analysis 4, 3 (2000), 201–217.

[6] Auer, M., Regitnig, P., and Holzapfel, G. A. An automatic non-

rigid registration for stained histological sections. IEEE Trans Image

Process 14, 4 (Apr 2005), 475–486.

200

BIBLIOGRAPHY 201

[7] Bajcsy, R., and Kovačič, S. Multiresolution elastic matching. Com-

put. Vision Graph. Image Process. 46, 1 (1989), 1–21.

[8] Bale, R. J., Vogele, M., Freysinger, W., Gunkel, A. R., Mar-

tin, A., Bumm, K., and Thumfart, W. F. Minimally invasive

head holder to improve the performance of frameless stereotactic surgery.

Laryngoscope 107, 3 (Mar 1997), 373–377.

[9] Bale, R. J., Vogele, M., Martin, A., Auer, T., Hensler, E.,

Eichberger, P., Freysinger, W., Sweeney, R., Gunkel, A. R.,

and Lukas, P. H. VBH head holder to improve frameless stereotactic

brachytherapy of cranial tumors. Comput Aided Surg 2, 5 (1997), 286–

291.

[10] Beatson, R. K., and Newsam, G. N. Fast evaluation of radial basis

functions : I. Computers Math. Applic. 24 (1992), 7–19.

[11] Besl, P., and McKay, H. A method for registration of 3-d shapes.

Pattern Analysis and Machine Intelligence, IEEE Transactions on 14, 2

(Feb. 1992), 239–256.

[12] Betke, M., Hong, H., Thomas, D., Prince, C., and Ko, J. P.

Landmark detection in the chest and registration of lung surfaces with

an application to nodule registration. Med Image Anal 7, 3 (Sep 2003),

265–281.

[13] Bookstein, F. L. Principal warps - thin-plate splines and the decom-

position of deformations. IEEE Transactions on Pattern Analysis and

Machine Intelligence 11, 6 (1989), 567–585.

[14] Bro-Nielsen, M. Medical Image Registration and Surgery Simulation.

PhD thesis. PhD thesis, Institut for Matematisk Modellering, Danmarks

Tekniske Universitet, Lyngby, Denmark, 1996.

BIBLIOGRAPHY 202

[15] Bro-Nielsen, M. Fast finite elements for surgery simulation. Stud Health

Technol Inform 39 (1997), 395–400.

[16] Bro-Nielsen, M., Helfrick, D., Glass, B., Zeng, X., and Con-

nacher, H. Vr simulation of abdominal trauma surgery. Stud Health

Technol Inform 50 (1998), 117–123.

[17] Bro-Nielsen, M., Tasto, J. L., Cunningham, R., and Merril,

G. L. PreOp endoscopic simulator: a pc-based immersive training system

for bronchoscopy. Stud Health Technol Inform 62 (1999), 76–82.

[18] Brown, L. G. A survey of image registration techniques. ACM Com-

puting Surveys 24, 4 (1992), 325–376.

[19] Buhmann, M. D. Radial Basis Functions: Theory and Implementations.

Cambridge University Press, 2004.

[20] Bushberg, J., Seibert, J., Leidholdt, E., and Boone, J. The Es-

sential Physics of Medical Imaging, Second Edition. Lippincott Williams

& Wilkins, 2002. ISBN 0-683-30118-7.

[21] Castro-Pareja, C. R., and Shekhar, R. Hardware acceleration of

mutual information-based 3D image registration. Journal of Imaging Sci-

ence and Technology 49, 2 (2005), 105–113.

[22] Chandrashekara, R., Mohiaddin, R., and Rueckert, D. Cardiac

motion tracking in tagged MR images using a 4D B-spline motion model

and nonrigid image registration. In Biomedical Imaging: Macro to Nano,

2004. IEEE International Symposium on (15-18 April 2004), pp. 468–

471Vol.1.

[23] Chandrashekara, R., Mohiaddin, R. H., and Rueckert, D. Anal-

ysis of 3-D myocardial motion in tagged MR images using nonrigid image

BIBLIOGRAPHY 203

registration. IEEE Trans Med Imaging 23, 10 (2004), 1245–50. IEEE

transactions on medical imaging.

[24] Chen, M. S., Gonzalez, G., and Lapeer, R. Intra-operative registra-

tion for image enhanced endoscopic sinus surgery using photo-consistency.

Stud Health Technol Inform 125 (2007), 67–72.

[25] Chen, M. S., Lapeer, R. J., and Rowland, R. S. Real-time render-

ing of radially distorted virtual scenes for endoscopic image augmentation.

Stud Health Technol Inform 111 (2005), 87–89.

[26] Christensen, G., Rabbitt, R., and Miller, M. Deformable tem-

plates using large deformation kinematics. Image Processing, IEEE

Transactions on 5, 10 (Oct. 1996), 1435–1447.

[27] Chui, H. L., and Rangarajan, A. A new point matching algorithm

for non-rigid registration. Computer Vision and Image Understanding 89,

2-3 (2003), 114–141.

[28] Clatz, O., Delingette, H., Talos, I. F., Golby, A. J., Kikinis,

R., Jolesz, F. A., Ayache, N., and Warfield, S. K. Robust non-

rigid registration to capture brain shift from intraoperative MRI. IEEE

Transactions on Medical Imaging 24, 11 (2005), 1417–1427.

[29] Collignon, A. Multi-modality medical image registration by maximiza-

tion of mutual information, PhD Thesis. PhD thesis, K.U. Leuven, 1998.

[30] Cooper, J. Optical flow for validating medical image registration. In in

9th IASTED International Conference on Signal and Image Processing,

pp. 502-506, Honolulu, Hawaii, USA, 13-15 August 2003. ACTA Press /

IASTED (2003).

BIBLIOGRAPHY 204

[31] Crum, W., Hartkens, T., and Hill, D. Non-rigid image registration:

theory and practice. The British Journal of Radiology 77 (2004), S140–

S153.

[32] Crum, W. R., Hill, D. L. G., and Hawkes, D. J. Information

theoretic similarity measures in non-rigid registration. Inf Process Med

Imaging 18 (Jul 2003), 378–387.

[33] D’Agostino, E., Maes, F., Vandermeulen, D., and Suetens, P.

A viscous fluid model for multimodal non-rigid image registration using

mutual information. In Lecture Notes in Computer Science: Medical Im-

age Computing and Computer-Assisted Intervention - MICCAI 2002: 5th

International Conference, Tokyo, Japan, September 25-28, 2002, Proceed-

ings, Part II (2002).

[34] Denton, E. R. E., Sonoda, L. I., Rueckert, D., Rankin, S. C.,

Hayes, C., Leach, M. O., Hill, D. L. G., and Hawkes, D. J. Com-

parison and evaluation of rigid, affine, and nonrigid registration of breast

MR images. Journal of Computer Assisted Tomography 23, 5 (1999),

800–805.

[35] Duchon, J. Splines minimizing rotation-invariant semi-norms in Sobolev

spaces. Constructive Theory of Functions of Several Variables, Proc. of

Conf., Math. Res. Inst., Oberwolfach (1976), Lecture Notes in Mathemat-

ics 571 (1977), 85–100.

[36] Duchon, J. Sur l’erreur d’interpolation des fonctions de plusieurs vari-

ables par les d m splines. Rev. Francaise Automat. Informat. Rech. Oper.

Analyse Numerique 12, 4 (1978), 325–334.

BIBLIOGRAPHY 205

[37] Eggers, G., Muhling, J., and Marmulla, R. Image-to-patient reg-

istration techniques in head surgery. Int J Oral Maxillofac Surg 35, 12

(Dec 2006), 1081–1095.

[38] Ehrhardt, J., Handels, H., Plotz, W., and Poppl, S. J. Atlas-

based recognition of anatomical structures and landmarks and the au-

tomatic computation of orthopedic parameters. Methods Inf Med 43, 4

(2004), 391–397.

[39] Eldeib, A., Yamany, S., and Farag, A. Multi-modal medical volumes

fusion by surface matching. In Signal Processing and Its Applications,

1999. ISSPA ’99. Proceedings of the Fifth International Symposium on

(22-25 Aug. 1999), vol. 1, pp. 439–442vol.1.

[40] Fei, B. W., Duerk, J. L., Sodee, D. B., and Wilson, D. L. Semi-

automatic nonrigid registration for the prostate and pelvic MR volumes.

Academic Radiology 12, 7 (2005), 815–824.

[41] Fei, B. W., Kemper, C., and Wilson, D. L. A comparative study

of warping and rigid body registration for the prostate and pelvic MR

volumes. Computerized Medical Imaging and Graphics 27, 4 (2003), 267–

281.

[42] Ferrant, M., Nabavi, A., Macq, B., Jolesz, F. A., Kikinis, R.,

and Warfield, S. K. Registration of 3-D intraoperative MR images of

the brain using a finite-element biomechanical model. IEEE Trans Med

Imaging 20, 12 (Dec 2001), 1384–1397.

[43] Fischer, B., and Modersitzki, J. Intensity-based image registration

with a guaranteed one-to-one point match. Methods Inf Med 43, 4 (2004),

327–330.

BIBLIOGRAPHY 206

[44] Fitzpatrick, J. M., West, J. B., and Maurer, C. R. Derivation

of expected registration error for point-based rigid-body registration. In

Medical Imaging : Image Processing (June 1998), K. M. Hanson, Ed.,

vol. 3338 of Presented at the Society of Photo-Optical Instrumentation

Engineers (SPIE) Conference, pp. 16–27.

[45] Fornefett, M., Rohr, K., and Stiehl, H. Elastic registration of

medical images using radial basis functions with compact support. In

Computer Vision and Pattern Recognition, 1999. IEEE Computer Society

Conference on. (23-25 June 1999), vol. 1.

[46] Frantz, S., Rohr, K., Stiehl, H., Kim, S., and Weese, J. Vali-

dating point-based MR/CT registration based on semi-automatic land-

mark extraction. In Proc. Computer Assisted Radiology and Surgery 1999

(CARS’99), Paris, France 23-26 June (1999), Elsevier Science, Amster-

dam, pp. 233–237.

[47] Frantz, S., Rohr, K., and Stiehl, H. S. Development and validation

of a multi-step approach to improved detection of 3D point landmarks in

tomographic images. Image and Vision Computing 23 (2005), 956–971.

[48] Gasson, P. D., and Lapeer, R. J. In vitro skin-tissue experiment

for increased realism in open surgery simulations. Stud Health Technol

Inform 125 (2007), 143–145.

[49] Gee, J. C., Reivich, M., and Bajcsy, R. Elastically deforming 3d

atlas to match anatomical brain images. J Comput Assist Tomogr 17, 2

(1993), 225–236.

[50] Gholipour, A., Kehtarnavaz, N., Briggs, R., Devous, M., and

Gopinath, K. Brain functional localization: a survey of image registra-

tion techniques. IEEE Trans Med Imaging 26, 4 (Apr 2007), 427–451.

BIBLIOGRAPHY 207

[51] Gladilin, E., Pekar, V., Rohr, K., and Stiehl, H. A comparison

between BEM and FEM for elastic registration of medical images. Image

and Vision Computing 24, 4 (April 2006), 375–379.

[52] Glozman, D., Shoham, M., and Fischer, A. A surface-matching

technique for robot-assisted registration. Comput Aided Surg 6, 5 (2001),

259–269.

[53] Guimond, A., Roche, A., Ayache, N., and Meunier, J. Three-

dimensional multimodal brain warping using the demons algorithm and

adaptive intensity corrections. IEEE Trans Med Imaging 20, 1 (Jan 2001),

58–69.

[54] Hajnal, J. V., Hill, D. L. G., and Hawkes, D. J. Medical Image

Registration. CRC Press, 2001.

[55] Han, Y., and Park, H. Automatic registration of brain magnetic reso-

nance images based on Talairach reference system. J Magn Reson Imaging

20, 4 (Oct 2004), 572–580.

[56] Hardy, R. L. Multiquadric equations of topography and other irregular

surfaces. J. Geophys. Res. 76 (1971), 1905–1915.

[57] Hardy, R. L. Theory and applications of the multiquadric-biharmonic

method. Comput. Math. Appl. 19 (1990), 163–208.

[58] Hardy, S. M., Melroy, C., White, D. R., Dubin, M., and Senior,

B. A comparison of computer-aided surgery registration methods for

endoscopic sinus surgery. Am J Rhinol 20, 1 (2006), 48–52.

[59] Harris, M. J., Baxter, W. V., Scheuermann, T., and Lastra, A.

Simulation of cloud dynamics on graphics hardware. In Proceedings of the

ACM SIGGRAPH/EUROGRAPHICS conference on graphics hardware,

Eurographics association (2003).

BIBLIOGRAPHY 208

[60] Herline, A. J., Herring, J. L., Stefansic, J. D., Chapman, W. C.,

Galloway, R. L., and Dawant, B. M. Surface registration for use in

interactive, image-guided liver surgery. Comput Aided Surg 5, 1 (2000),

11–17.

[61] Hermosillo, G., Chefd’Hotel, C., and Faugeras, O. Variational

methods for multimodal image matching. International Journal of Com-

puter Vision 50, 3 (2002), 329–343.

[62] Herring, J. L., and Dawant, B. M. Automatic lumbar vertebral

identification using surface-based registration. J Biomed Inform 34, 2

(Apr 2001), 74–84.

[63] Hill, D. L., Hawkes, D. J., Crossman, J. E., Gleeson, M. J., Cox,

T. C., Bracey, E. E., Strong, A. J., and Graves, P. Registration

of MR and CT images for skull base surgery using point-like anatomical

features. Br J Radiol 64, 767 (Nov 1991), 1030–1035.

[64] Hill, D. L., Hawkes, D. J., Gleeson, M. J., Cox, T. C., Strong,

A. J., Wong, W. L., Ruff, C. F., Kitchen, N. D., Thomas, D. G.,

and Sofat, A. Accurate frameless registration of MR and CT images of

the head: applications in planning surgery and radiation therapy. Radi-

ology 191, 2 (May 1994), 447–454.

[65] Hill, D. L., Hawkes, D. J., Hussain, Z., Green, S. E., Ruff,

C. F., and Robinson, G. P. Accurate combination of CT and MR

data of the head: validation and applications in surgical and therapy

planning. Comput Med Imaging Graph 17, 4-5 (1993), 357–363.

[66] Hill, D. L. G., Batchelor, P. G., Holden, M., and Hawkes, D. J.

Medical image registration. Physics in Medicine and Biology 46 (2001),

R1–R45.

BIBLIOGRAPHY 209

[67] Holly, L. T., Bloch, O., and Johnson, J. P. Evaluation of registra-

tion techniques for spinal image guidance. J Neurosurg Spine 4, 4 (Apr

2006), 323–328.

[68] Huang, X. L., Paragios, N., and Metaxas, D. N. Shape registration

in implicit spaces using information theory and free form deformations.

IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 8

(2006), 1303–1318.

[69] Huesman, R. H., Klein, G. J., Kimdon, J. A., Kuo, C., and Ma-

jumdar, S. Deformable registration of multimodal data including rigid

structures. IEEE Transactions on Nuclear Science 50, 3 (2003), 389–392.

[70] Hufner, T., Geerling, J., Kfuri, M., Gansslen, A., Citak, M.,

Kirchhoff, T., Sott, A. H., and Krettek, C. Computer assisted

pelvic surgery: registration based on a modified external fixator. Comput

Aided Surg 8, 4 (2003), 192–197.

[71] Ibanez, L., Schroeder, W., Ng, L., Cates, J., and The Insight

Software Consortium. The ITK software guide, 2003.

[72] Ino, F., Ooyama, K., Takeuchi, A., and Hagihara, K. Design

and implementation of parallel nonrigid image registration using off-the-

shelf supercomputers. Medical Image Computing and Computer-Assisted

Intervention - Miccai 2003, Pt 1 2878 (2003), 327–334.

[73] Jacobs, M. A., Windham, J. P., Soltanian-Zadeh, H., Peck,

D. J., and Knight, R. A. Registration and warping of magnetic reso-

nance images to histological sections. Med Phys 26, 8 (Aug 1999), 1568–

1578.

BIBLIOGRAPHY 210

[74] Jian, B., Vemuri, B. C., and Marroquin, J. L. Robust nonrigid

multimodal image registration using local frequency maps. Information

Processing in Medical Imaging, Proceedings 3565 (2005), 504–515.

[75] Kagadis, G. C., Delibasis, K. K., Matsopoulos, G. K.,

Mouravliansky, N. A., Asvestas, P. A., and Nikiforidis, G. C.

A comparative study of surface- and volume-based techniques for the au-

tomatic registration between CT and SPECT brain images. Med Phys

29, 2 (Feb 2002), 201–213.

[76] Keeling, S., and Ring, W. Medical image registration and interpo-

lation by optical flow with maximal rigidity. Journal of Mathematical

Imaging and Vision 23, 1 (July 2005), 47–65.

[77] Khamene, A., Bloch, P., Wein, W., Svatos, M., and Sauer, F.

Automatic registration of portal images and volumetric CT for patient

positioning in radiation therapy. Medical Image Analysis 10, 1 (2006),

96–112.

[78] Klein, S., Staring, M., and Pluim, J. A comparison of accelera-

tion techniques for nonrigid medical image registration. In International

Workshop on Biomedical Image Registration (2006), vol. 4057 of Lecture

Notes in Computer Science, pp. 151–159.

[79] Knops, Z. F., Maintz, J. B. A., Viergever, M. A., and Pluim, J.

P. W. Normalized mutual information based registration using k-means

clustering and shading correction. Medical Image Analysis 10, 3 (2006),

432–439.

[80] Kohlrausch, J., Rohr, K., and Stiehl, H. A new class of elas-

tic body splines for nonrigid registration of medical images. Journal of

Mathematical Imaging and Vision 23, 3 (2005), 253–280.

BIBLIOGRAPHY 211

[81] Krucker, J. F., LeCarpentier, G. L., Fowlkes, J. B., and Car-

son, P. L. Rapid elastic image registration for 3-D ultrasound. IEEE

Transactions on Medical Imaging 21, 11 (2002), 1384–1394.

[82] Kybic, J., and Unser, M. Fast parametric elastic image registration.

Image Processing, IEEE Transactions on 12, 11 (Nov. 2003), 1427–1442.

[83] Lange, T., Eulenstein, S., Hunerbein, M., and Schlag, P.-M.

Vessel-based non-rigid registration of MR/CT and 3D ultrasound for nav-

igation in liver surgery. Comput Aided Surg 8, 5 (2003), 228–240.

[84] Lapeer, R. J. A mechanical contact model for the simulation of obstetric

forceps delivery in a virtual/augmented environment. Stud Health Technol

Inform 111 (2005), 284–289.

[85] Lapeer, R. J., Gasson, P., Florens, J.-L., Laycock, S., and

Karri, V. Introducing a novel haptic interface for the planning and

simulation of open surgery. Stud Health Technol Inform 98 (2004), 197–

199.

[86] Lapeer, R. J., and Prager, R. W. 3D shape recovery of a newborn

skull using thin-plate splines. Comput Med Imaging Graph 24, 3 (2000),

193–204.

[87] Lapeer, R. J., and Prager, R. W. Fetal head moulding: finite el-

ement analysis of a fetal skull subjected to uterine pressures during the

first stage of labour. J Biomech 34, 9 (Sep 2001), 1125–1133.

[88] Lapeer, R. J. A. A biomechanical model of foetal head moulding -

PhD Thesis. PhD thesis, Queens’ College Cambridge and Department of

Engineering, University of Cambridge, 1999.

[89] Lazebnik, R. S., Lancaster, T. L., Breen, M. S., Lewin, J. S.,

and Wilson, D. L. Volume registration using needle paths and point

BIBLIOGRAPHY 212

landmarks for evaluation of interventional MRI treatments. IEEE Trans

Med Imaging 22, 5 (May 2003), 653–660.

[90] Lee, S., Wolberg, G., and Shin, S. Y. Scattered data interpola-

tion with multilevel B-splines. IEEE Transactions on Visualization and

Computer Graphics 3, 3 (1997), 228–244.

[91] Lee, W.-C. C., Tublin, M. E., and Chapman, B. E. Registration of

MR and CT images of the liver: comparison of voxel similarity and surface

based registration algorithms. Comput Methods Programs Biomed 78, 2

(May 2005), 101–114.

[92] Lefebure, M., and Cohen, L. D. Image registration, optical flow and

local rigidity. Journal of Mathematical Imaging and Vision 14, 2 (March

2001), 131–147.

[93] Leroy, A., Mozer, P., Payan, Y., and Troccaz, J. Intensity-based

registration of freehand 3D ultrasound and CT-scan images of the kidney.

Int J CARS 2 (2007), 31–41.

[94] Levesley, J. Where there’s a Will there’s a way - the research of Will

Light. Numerical Algorithms 39 (2005), 7–34.

[95] Levin, D., Dey, D., and Slomka, P. Efficient 3D nonlinear warping

of computed tomography: two high-performance implementations using

OpenGL. In Medical Imaging 2005: Visualization, Image-Guided Proce-

dures, and Display. Edited by Galloway, Robert L., Jr.; Cleary, Kevin R.

Proceedings of the SPIE, Volume 5744, pp. 34-42 (2005). (April 2005),

R. Galloway, Jr. and K. Cleary, Eds., vol. 5744 of Presented at the Society

of Photo-Optical Instrumentation Engineers (SPIE) Conference, pp. 34–

42.

BIBLIOGRAPHY 213

[96] Levin, D., Dey, D., and Slomka, P. J. Acceleration of 3D, nonlinear

warping using standard video graphics hardware: implementation and

initial validation. Comput Med Imaging Graph 28, 8 (Dec 2004), 471–

483.

[97] Likar, B., and Pernus, F. Automatic extraction of corresponding

points for the registration of medical images. Med Phys 26, 8 (Aug 1999),

1678–1686.

[98] Likar, B., and Pernus, F. A hierarchical approach to elastic registra-

tion based on mutual information. Image and Vision Computing 19, 1

(January 2001), 33–44.

[99] Little, J. A., Hill, D. L. G., and Hawkes, D. J. Deformations

incorporating rigid structures. In MMBIA ’96: Proceedings of the 1996

Workshop on Mathematical Methods in Biomedical Image Analysis (MM-

BIA ’96) (Washington, DC, USA, 1996), IEEE Computer Society, p. 104.

[100] Livne, O. E., and Wright, G. B. Fast multilevel evaluation of 1-

D piecewise smooth radial basis function expansions. SIAM Proceedings

Geometric Design and Computing To appear (2007) (2005), 0. To appear

(2007).

[101] Livne, O. E., and Wright, G. B. Fast multilevel evaluation of smooth

radial basis function expansions. Electronic Transactions on Numerical

Analysis 23 (2006), 263–287.

[102] Loeckx, D., Maes, F., Vandermeulen, D., and Suetens, P. Non-

rigid image registration using free-form deformations with a local rigidity

constraint. Medical Image Computing and Computer-Assisted Interven-

tion - Miccai 2004, Pt 1, Proceedings 3216 (2004), 639–646.

BIBLIOGRAPHY 214

[103] Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., and

Suetens, P. Multimodality image registration by maximization of mu-

tual information. Medical Imaging, IEEE Transactions on 16, 2 (April

1997), 187–198.

[104] Maes, F., Vandermeulen, D., and Suetens, P. Medical image regis-

tration using mutual information. Proceedings of the IEEE 91, 10 (2003),

1699–1722.

[105] Maintz, J., Meijering, E., and Viergever, M. General multimodal

elastic registration based on mutual information. In In: Proc. SPIE Med-

ical Imaging 1998: Image Processing. Bellingham (1998).

[106] Maintz, J. B. A., and Viergever, M. A. A survey of medical image

registration. Medical Image Analysis 2, 1 (1998), 1–36.

[107] Malthan, D., Ehrlich, G., Stallkamp, J., Dammann, F.,

Schwaderer, E., and Maassen, M. M. Automated registration of par-

tially defective surfaces by local landmark identification. Comput Aided

Surg 8, 6 (2003), 300–309.

[108] Matsopoulos, G. K., Delibasis, K. K., Mouravliansky, N. A.,

Asvestas, P. A., Nikita, K. S., Kouloulias, V. E., and Uzunoglu,

N. K. CT-MRI automatic surface-based registration schemes combin-

ing global and local optimization techniques. Technol Health Care 11, 4

(2003), 219–232.

[109] Mattes, D., Haynor, D. R., Vesselle, H., Lewellen, T. K., and

Eubank, W. PET-CT image registration in the chest using free-form

deformations. IEEE Trans Med Imaging 22, 1 (Jan 2003), 120–128.

[110] Mattes, D., Haynor, D. R., Vesselle, H., Lewellyn, T. K., and

Eubank, W. Nonrigid multimodality image registration. In Proc. SPIE

BIBLIOGRAPHY 215

Vol. 4322, p. 1609-1620, Medical Imaging 2001: Image Processing, Mi-

lan Sonka; Kenneth M. Hanson; Eds. (July 2001), M. Sonka and K. M.

Hanson, Eds., vol. 4322 of Presented at the Society of Photo-Optical In-

strumentation Engineers (SPIE) Conference, pp. 1609–1620.

[111] Matuszewski, B. J., Shen, J.-K., Shark, L.-K., and Moore,

C. J. Estimation of internal body deformations using an elastic reg-

istration technique. International Conference on Medical Information

Visualisation–BioMedical Visualisation (MedVis’06) 0 (2006), 15–20.

[112] Maurer, C. R., Fitzpatrick, J. M., Wang, M. Y., Galloway,

R. L., Maciunas, R. J., and Allen, G. S. Registration of head volume

images using implantable fiducial markers. IEEE Trans Med Imaging 16,

4 (Aug 1997), 447–462.

[113] Maurer, C. R., Maciunas, R. J., and Fitzpatrick, J. M. Registra-

tion of head CT images to physical space using a weighted combination of

points and surfaces. IEEE Trans Med Imaging 17, 5 (Oct 1998), 753–761.

[114] Maurer, C. R., McCrory, J. J., and Fitzpatrick, J. M. Estima-

tion of accuracy in localizing externally attached markers in multimodal

volume head images. In Medical imaging: image processing (Bellingham,

WA., 1993), M. H. Loew, Ed., vol. 1898, SPIE Press, pp. 43–54.

[115] McRobbie, D. W., Moore, E. A., Graves, M. J., and Prince,

M. R. MRI From Picture to Proton. Cambridge University Press, 2003.

[116] Meinguet, J. Multivariate interpolation at arbitrary points made sim-

ple. Zeitschrift fur Angewandte Mathematik und Physik (ZAMP) 30, 2

(March 1979), 292–304.

[117] Meyer, C. R., Boes, J. L., Kim, B., Bland, P. H., Zasadny, K. R.,

Kison, P. V., Koral, K., Frey, K. A., and Wahl, R. L. Demon-

BIBLIOGRAPHY 216

stration of accuracy and clinical versatility of mutual information for

automatic multimodality image fusion using affine and thin-plate spline

warped geometric deformations. Med Image Anal 1, 3 (Apr 1997), 195–

206.

[118] Muratore, D. M., Russ, J. H., Dawant, B. M., and Jr., R. L. G.

Three-dimensional image registration of phantom vertebrae for image-

guided surgery: A preliminary study. Computer Aided Surgery 7, 6 (2002),

342–352.

[119] Ourselin, S., Roche, A., Prima, S., and Ayache, N. Block match-

ing: A general framework to improve robustness of rigid registration of

medical images. In MICCAI ’00: Proceedings of the Third International

Conference on Medical Image Computing and Computer-Assisted Inter-

vention (2000), Springer-Verlag, pp. 557–566.

[120] Ourselin, S., Stefanescu, R., and Pennec, X. Robust registra-

tion of multi-modal images: Towards real-time clinical applications. In

MICCAI ’02: Proceedings of the 5th International Conference on Medical

Image Computing and Computer-Assisted Intervention-Part II (2002),

Springer-Varlag, pp. 140–147.

[121] Owens, J. D., Luebke, D., Govindaraju, N., Harris, M., Krüger,

J., Lefohn, A. E., and Purcell, T. A survey of general-purpose

computation on graphics hardware. In Eurographics 2005, State of the

Art Reports (September 2005), pp. 21–51.

[122] Papademetris, X., Jackowski, A. P., Schultz, R. T., Staib, L. H.,

and Duncan, J. S. Integrated intensity and point-feature nonrigid reg-

istration. Medical Image Computing and Computer-Assisted Intervention

- Miccai 2004, Pt 1, Proceedings 3216 (2004), 763–770.

BIBLIOGRAPHY 217

[123] Peckar, W., Schnorr, C., Rohr, K., and Stiehl, H. Non-rigid

image registration using a parameter-free elastic model. In BMVC98

(1998).

[124] Petrovic, V. S., Cootes, T. F., Twining, C. J., and Taylor, C.

Automatic framework for medical image registration, segmentation and

modeling. In Proc. Medical Image Understanding and Analysis MIUA

(2006), vol. 2, pp. 141–145.

[125] Pitiot, A., Malandain, G., Bardinet, E., and Thompson, P.

Piecewise Affine Registration of Biological Images, vol. 2717 of Lecture

Notes in Computer Science. Springer Berlin / Heidelberg, 2003.

[126] Pluim, J. P., Maintz, J. B., and Viergever, M. A. Image regis-

tration by maximization of combined mutual information and gradient

information. IEEE Trans Med Imaging 19, 8 (Aug 2000), 809–814.

[127] Pluim, J. P. W., Maintz, J. B. A., and Viergever, M. A. Interpola-

tion artefacts in mutual information-based image registration. Computer

Vision and Image Understanding 77 (2000), 211–232.

[128] Pluim, J. P. W., Maintz, J. B. A., and Viergever, M. A. Mutual-

information-based registration of medical images: a survey. IEEE Trans

Med Imaging 22, 8 (Aug 2003), 986–1004.

[129] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flan-

nery, B. P. Numerical Recipes in C, The Art of Scientific Computing,

Second Edition. Cambridge University Press, 1999.

[130] Rietzel, E., and Chen, G. T. Y. Deformable registration of 4D com-

puted tomography data. Med Phys 33, 11 (Nov 2006), 4423–4430.

BIBLIOGRAPHY 218

[131] Rivera-Rovelo, J., and Bayro-Corrochano, E. Non-rigid registra-

tion and geometric approach for tracking in neurosurgery. 17th Interna-

tional Conference on Pattern Recognition (ICPR’04) 04 (2004), 717–720.

[132] Rohde, G., Healy, D., Berenstein, C., and Aldroubi, A. Interpo-

lation artifacts in biomedical image registration. In Biomedical Imaging:

From Nano to Macro, 2007. ISBI 2007. 4th IEEE International Sympo-

sium on (12-15 April 2007), pp. 648–651.

[133] Rohde, G. K., Aldroubi, A., and Dawant, B. M. The adaptive

bases algorithm for intensity-based nonrigid image registration. IEEE

Transactions on Medical Imaging 22, 11 (2003), 1470–1479.

[134] Rohde, G. K., Berenstein, C. A., and Healy Jr., D. M. Measuring

image similarity in the presence of noise. In Proceedings of the SPIE, vol.

5747, Medical Imaging (2005), pp. Image Processing; pp. 132–143.

[135] Rohde, G. K., Healy Jr., D. M., Berenstein, C. A., and Al-

droubi, A. Measuring image similarity to sub-pixel accuracy. In Biomed-

ical Imaging: Macro to Nano, 2006. 3rd IEEE International Symposium

on (6-9 April 2006), pp. 638–641.

[136] Rohlfing, T., and Maurer, C. R. Nonrigid image registration in

shared-memory multiprocessor environments with application to brains,

breasts, and bees. IEEE Transactions on Information Technology in

Biomedicine 7, 1 (2003), 16–25.

[137] Rohlfing, T., Maurer, C. R., Bluemke, D. A., and Jacobs, M. A.

Volume-preserving nonrigid registration of MR breast images using free-

form deformation with an incompressibility constraint. IEEE Transac-

tions on Medical Imaging 22, 6 (2003), 730–741.

BIBLIOGRAPHY 219

[138] Rohr, K. Landmark-Based Image Analysis Using Geometric and Inten-

sity Models. Kluwer Academic Publishers, 2001.

[139] Rohr, K., Stiehl, H. S., Sprengel, R., Buzug, T. M., Weese, J.,

and Kuhn, M. H. Landmark-based elastic registration using approxi-

mating thin-plate splines. IEEE Trans Med Imaging 20, 6 (Jun 2001),

526–534.

[140] Roussos, G., and Baxter, B. J. C. Rapid evaluation of radial ba-

sis functions. Journal of Computational and Applied Mathematics 180

(2005), 51–70.

[141] Rowland, R. S., and Lapeer, R. J. A. 3DView - volumetric visual-

isation software – http://www.rmrsystems.co.uk/volume rendering.htm,

2004.

[142] Rueckert, D., Aljabar, P., Heckemann, R., Hajnal, J., and

Hammers, A. Diffeomorphic registration using b-splines. In In Ninth Int.

Conf. on Medical Image Computing and Computer-Assisted Intervention

(MICCAI 2006) (2006), Lecture Notes in Computer Science, pp. 702–709.

[143] Rueckert, D., Burger, P., Forbat, S., Mohiaddin, R., and Yang,

G. Automatic tracking of the aorta in cardiovascular MR images using

deformable models. Medical Imaging, IEEE Transactions on 16, 5 (Oct.

1997), 581–590.

[144] Rueckert, D., Chandrashekara, R., Aljabar, P., Bhatia, K.,

Boardman, J., Srinivasan, L., Rutherford, M., Dyet, L., Ed-

wards, A., Hajnal, J., and Mohiaddin, R. Quantification of

growth and motion using non-rigid registration. In In 2nd International

Workshop on Computer Vision Approaches to Medical Image Analysis

(CVAMIA 2006) (2006), Lecture Notes in Computer Science, pp. 49–60.

BIBLIOGRAPHY 220

[145] Rueckert, D., Frangi, A. F., and Schnabel, J. A. Automatic con-

struction of 3-D statistical deformation models of the brain using non-

rigid registration. IEEE Trans Med Imaging 22, 8 (2003), 1014–25. IEEE

transactions on medical imaging.

[146] Rueckert, D., Hayes, C., Studholme, C., Summers, P., Leach,

M., and Hawkes, D. J. Non-rigid registration of breast MR images

using mutual information. Medical Image Computing and Computer-

Assisted Intervention - Miccai’98 1496 (1998), 1144–1152.

[147] Rueckert, D., Lorenzo-Valdes, M., Chandrashekara, R.,

Sanchez-Ortiz, G., and Mohiaddin, R. Non-rigid registration of

cardiac MR: application to motion modelling and atlas-based segmenta-

tion. In Biomedical Imaging, 2002. Proceedings. 2002 IEEE International

Symposium on (7-10 July 2002), pp. 481–484.

[148] Rueckert, D., Sonoda, L. I., Denton, E., Rankin, S., Hayes, C.,

Hill, D. L. G., Leach, M., and Hawkes, D. J. Comparison and

evaluation of rigid and non-rigid registration of breast MR images. In

In Proc. SPIE Medical Imaging 1999: Image Processing, San Diego, CA

(1999), pp. 78–88.

[149] Rueckert, D., Sonoda, L. I., Hayes, C., Hill, D. L. G., Leach,

M. O., and Hawkes, D. J. Nonrigid registration using free-form de-

formations: Application to breast MR images. IEEE Transactions on

Medical Imaging 18, 8 (1999), 712–721.

[150] Russakoff, D. B., Rohlfing, T., Adler, J. R., and Maurer,

C. R. Intensity-based 2D-3D spine image registration incorporating a

single fiducial marker. Acad Radiol 12, 1 (Jan 2005), 37–50.

BIBLIOGRAPHY 221

[151] Sabisch, T., Ferguson, A., and Bolouri, H. Automatic landmark

extraction using self-organising maps. In IEE/BMVA Proceedings of

the 1st annual conference on medical image understanding and analysis

(MIUA’97), Oxford UK (1997), pp. 157–160.

[152] Schestowitz, R., Twining, C., Cootes, T., Petrovic, V., Tay-

lor, C., and Crum, W. Assessing the accuracy of non-rigid registration

with and without ground truth. In 3rd IEEE International Symposium

on Biomedical Imaging: Macro to Nano (2006), pp. 836–839.

[153] Schestowitz, R. S., Twining, C. J., Petrovic, V. S., Cootes, T.,

Crum, B., and Taylor, C. Non-rigid registration assessment without

ground truth. In Proc. Medical Image Understanding and Analysis MIUA

(2006), vol. 2, pp. 151–155.

[154] Schnabel, J. A., Rueckert, D., Quist, M., Blackall, J. M.,

Castellano-Smith, A. D., Hartkens, T., Penney, G. P., Hall,

W. A., Liu, H., Truwit, C. L., Gerritsen, F. A., Hill, D. L. G.,

and Hawkes, D. J. A generic framework for non-rigid registration

based on non-uniform multi-level free-form deformations. In MICCAI

’01: Proceedings of the 4th International Conference on Medical Image

Computing and Computer-Assisted Intervention (2001), Springer-Verlag,

pp. 573–581.

[155] Schnabel, J. A., Tanner, C., Castellano-Smith, A. D., Degen-

hard, A., Leach, M. O., Hose, D. R., Hill, D. L. G., and Hawkes,

D. J. Validation of nonrigid image registration using finite-element meth-

ods: Application to breast MR images. IEEE Transactions on Medical

Imaging 22, 2 (2003), 238–247.

[156] Schreibmann, E., and Xing, L. Image registration with auto-mapped

control volumes. Medical Physics 33, 4 (2006), 1165–1179.

BIBLIOGRAPHY 222

[157] Shekhar, R., Walimbe, V., Raja, S., Zagrodsky, V., Kanvinde,

M., Wu, G., and Bybel, B. Automated 3-dimensional elastic registra-

tion of whole-body PET and CT from separate or combined scanners. J

Nucl Med 46, 9 (Sep 2005), 1488–1496.

[158] Shekhar, R., and Zagrodsky, V. Mutual information-based rigid

and nonrigid registration of ultrasound volumes. IEEE Transactions on

Medical Imaging 21, 1 (2002), 9–22.

[159] Shekhar, R., Zagrodsky, V., Castro-Pareja, C. R., Walimbe,

V., and Jagadeesh, J. M. High-Speed Registration of Three- and Four-

dimensional Medical Images by Using Voxel Similarity. Radiographics 23,

6 (2003), 1673–1681.

[160] Shuhaiber, J. H. Augmented reality in surgery. Arch Surg 139, 2 (Feb

2004), 170–174.

[161] Sivaramakrishna, R., Krucker, J. F., Meyer, C. R., LeCarpen-

tier, G. L., Fowlkes, J. B., and Carson, P. L. 3D spatial com-

pounding of ultrasound images using image-based nonrigid registration.

Technology in Cancer Research & Treatment 26, 9 (2000), 1475–1488.

[162] Slagmolen, P., Loeckx, D., Roels, S., Geets, X., Maes, F.,

Haustermans, K., and Suetens, P. Nonrigid registration of multitem-

poral CT and MR images for radiotherapy treatment planning. Biomed-

ical Image Registration, Proceedings 4057 (2006), 297–305.

[163] Slomka, P. J., Dey, D., Przetak, C., Aladl, U. E., and Baum,

R. P. Automated 3-dimensional registration of stand-alone (18)F-FDG

whole-body PET with CT. J Nucl Med 44, 7 (Jul 2003), 1156–1167.

BIBLIOGRAPHY 223

[164] Stefanescu, R., Pennec, X., and Ayache, N. Grid powered nonlin-

ear image registration with locally adaptive regularization. Medical Image

Analysis 8, 3 (2004), 325–342.

[165] Studholme, C., Hill, D. L. G., and Hawkes, D. J. An overlap in-

variant entropy measure of 3D medical image alignment. Pattern Recog-

nition 32 (1999), 71–86.

[166] Sturm, B., Powell, K. A., Stillman, A. E., and White, R. D.

Registration of 3D CT angiography and cardiac MR images in coronary

artery disease patients. Int J Cardiovasc Imaging 19, 4 (Aug 2003), 281–

293.

[167] Tang, S. Y., Chen, Y. W., Xu, R., Wang, Y., Morikawa, S.,

and Kurumi, Y. MR-CT image registration in liver cancer treatment

with an open configuration MR scanner. Biomedical Image Registration,

Proceedings 4057 (2006), 289–296.

[168] Tang, S. Y., and Jiang, T. Z. Nonrigid registration of medical image

by linear singular blending techniques. Pattern Recognition Letters 25, 4

(2004), 399–405.

[169] Thirion, J. P. Image matching as a diffusion process: an analogy with

maxwell’s demons. Med Image Anal 2, 3 (Sep 1998), 243–260.

[170] Trancoso, P., and Charalambous, M. Exploring graphics processor

performance for general purpose applications. In In Proceedings of the

Euromicro Symposium on Digital System Design, Architectures, Methods

and Tools (DSD 2005), IEEE Computer Society (2005), pp. 306–313.

[171] Tsao, J. Interpolation artifacts in multimodality image registration

based on maximization of mutual information. IEEE Trans Med Imaging

22, 7 (July 2003), 854–864.

BIBLIOGRAPHY 224

[172] Tustison, N. J., Avants, B. B., Sundaram, T. A., Duda, J. T.,

and Gee, J. C. A generalization of Free-Form Deformation image reg-

istration within the ITK finite element framework. Biomedical Image

Registration, Proceedings 4057 (2006), 238–246.

[173] Tustison, N. J., and Gee, J. C. N-D ck B-spline scattered data

approximation. The Insight Journal - http://hdl.handle.net/1926/140,

November 2005.

[174] Tustison, N. J., and Gee, J. C. Generalized n-D ck B-spline scattered

data approximation with confidence values. In MIAR (2006), G.-Z. Yang,

T. Jiang, D. Shen, L. Gu, and J. Yang, Eds., vol. 4091 of Lecture Notes

in Computer Science, Springer, pp. 76–83.

[175] Urschler, M., Zach, C., Ditt, H., and Bischof, H. Automatic

point landmark matching for regularizing nonlinear intensity registration:

application to thoracic CT images. Med Image Comput Comput Assist

Interv Int Conf Med Image Comput Comput Assist Interv 9, Pt 2 (2006),

710–717.

[176] Viola, P. Alignment by maximization of mutual information - PhD

Thesis. PhD thesis, M.I.T. Artificial Intelligence Laboratory, 1995.

[177] Viola, P., and Wells, W. M. Alignment by maximization of mutual

information. International Journal of Computer Vision 24, 2 (1997), 137–

154.

[178] Wahba, G. Spline models for observational data. Society for Industrial

and Applied Mathematics, 1990. ISBN 0-89871-244-0.

[179] Wang, D., Strugnell, W., Cowin, G., Doddrell, D. M., and

Slaughter, R. Geometric distortion in clinical MRI systems Part I:

BIBLIOGRAPHY 225

evaluation using a 3D phantom. Magnetic Resonance Imaging 22 (2004),

1211–1221.

[180] Wang, F., Vemuri, B. C., and Eisenschenk, S. J. Joint registration

and segmentation of neuroanatomic structures from brain MRI. Academic

Radiology 13, 9 (2006), 1104–1111.

[181] Wang, X., and Feng, D. D. Automatic hybrid registration for 2-

dimensional CT abdominal images. Third International Conference on

Image and Graphics (ICIG’04) 00 (2004), 208–211.

[182] Warfield, S. K., Nabavi, A., Butz, T., Tuncali, K., Silverman,

S. G., Black, P. M., Jolesz, F. A., and Kikinis, R. Intraoperative

segmentation and nonrigid registration for image guided therapy. Medi-

cal Image Computing and Computer-Assisted Intervention - Miccai 2000

1935 (2000), 176–185.

[183] Wells III, W. M., Viola, P., Atsumi, H., Nakajima, S., and Kiki-

nis, R. Multi-modal volume registration by maximization of mutual in-

formation. Medical Image Analysis 1, 1 (1996), 35–51.

[184] West, J., Fitzpatrick, J. M., Wang, M. Y., Dawant, B. M., Mau-

rer, C. R., Kessler, R. M., and Maciunas, R. J. Retrospective in-

termodality registration techniques for images of the head: surface-based

versus volume-based. IEEE Trans Med Imaging 18, 2 (Feb 1999), 144–

150.

[185] Winter, S., Brendel, B., Rick, A., Stockheim, M., Schmieder,

K., and Ermert, H. Registration of bone surfaces, extracted from CT-

datasets, with 3D ultrasound. Biomed Tech (Berl) 47 Suppl 1 Pt 1 (2002),

57–60.

BIBLIOGRAPHY 226

[186] Wolfsberger, S., Rossler, K., Regatschnig, R., and Ungers-

bock, K. Anatomical landmarks for image registration in frameless

stereotactic neuronavigation. Neurosurg Rev 25, 1-2 (Mar 2002), 68–72.

[187] Wollny, G., and Kruggel, F. Computional cost of nonrigid registra-

tion algorithms based on fluid dynamics. IEEE Transactions on Medical

Imaging 21, 8 (2002), 946–952.

[188] Worz, S., and Rohr, K. Localization of anatomical point landmarks

in 3D medical images by fitting 3D parametric intensity models. Med

Image Anal 10, 1 (Feb 2006), 41–58.

[189] Worz, S., and Rohr, K. Physics-based elastic image registration us-

ing splines and including landmark localization uncertainties. Med Image

Comput Comput Assist Interv Int Conf Med Image Comput Comput As-

sist Interv 9, Pt 2 (2006), 678–685.

[190] Wright, G. B. Personal communication. Email correspondence, July

2007.

[191] Xiao, G. F., Brady, J. M., Noble, J. A., Burcher, M., and En-

glish, R. Nonrigid registration of 3-D free-hand ultrasound images of

the breast. IEEE Transactions on Medical Imaging 21, 4 (2002), 405–412.

[192] Xie, Z., and Farin, G. E. Image registration using hierarchical B-

splines. IEEE Trans Vis Comput Graph 10, 1 (2004), 85–94.

[193] Zagorchev, L., and Goshtasby, A. A comparative study of transfor-

mation functions for nonrigid image registration. IEEE Transactions on

Image Processing 15, 3 (2006), 529–538.

[194] Zhan, Y., Feldman, M., Tomaszeweski, J., Davatzikos, C., and

Shen, D. Registering histological and MR images of prostate for image-

BIBLIOGRAPHY 227

based cancer detection. Med Image Comput Comput Assist Interv Int

Conf Med Image Comput Comput Assist Interv 9, Pt 2 (2006), 620–628.

[195] Zhang, J., Levesque, M. F., Wilson, C. L., Harper, R. M., En-

gel, J., Lufkin, R., and Behnke, E. J. Multimodality imaging of

brain structures for stereotactic surgery. Radiology 175, 2 (May 1990),

435–441.

[196] Zitova, B., and Flusser, J. Image registration methods: a survey.

Image and Vision Computing 21, 11 (2003), 977–1000.

